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Motivated by the desire to use Coulomb forces as a non-contact means for one satellite
to exert forces on another satellite for applications such as debris removal, a two-player
non-cooperative zero-sum-game is formulated. Despite uncertainty in the dynamics of a
disabled satellite (DS), including uncertainty in the interaction forces with a service satel-
lite (SS), an approximately optimal real-time feedback policy (i.e., approximate dynamic
programming (ADP)) is derived by using reinforcement learning and a Bellman error (BE)
extrapolation method to identify the unknown value function provided a mild su�cient ex-
citation condition is satis�ed. In comparison to the typical pursuit-evade mini-max game,
the SS is also tasked with regulating the orbital state of the DS to a desired state. A
Lyapunov-based analysis is used to conclude that the SS approximately optimally inter-
cepts the DS and regulates it to a neighborhood of the desired orbital state (i.e., uniformly
ultimately bounded steady-state errors) while maintaining a desired relative o�set distance.
Initial simulations demonstrate the feasibility and performance of the developed controller
using a potential �eld to model the uncertain interaction forces. Additional e�orts will
focus on a higher �delity model of the Coulomb forces.

I. Introduction

Since the launch of Sputnik in 1957, there have been more than 5,000 space launches. Currently, there
are more than 23,000 tracked objects in Earth orbits, of which only 1,200 can be considered functional
spacecraft. Furthermore, based on models from the National Aeronautics and Space Administration and
European Space Agency, it is estimated that over 750,000 objects larger than 1 cm and 100 million objects
larger than 1 mm reside in Earth orbits, all of which are considered space debris.1,2

The international space community has established several guidelines and policies to address the growth
in orbital debris, which is a major concern due to the risk it poses to payloads and onboard instru-
ments/electronics. For example, in 2007 the United Nations adopted the �25-year rule� space debris mitiga-
tion guidelines as a mechanism to address this concern.3 However, some recent studies have shown that the
debris population in low Earth orbit (LEO) may have reached the point where the debris population will
continue to grow in the next 200 years, even without any future launches.4,5 While these studies focused
on the LEO region, the medium Earth orbit, and the geostationary Earth orbit (GEO) regions also have
signi�cant space debris concerns, particularly due to the mega-constellations that are being proposed. In
response to these concerns, active debris removal (ADR) has been proposed as a viable approach to mitigate
the growth of space debris.6

The Inter-Agency Space Debris Coordination Committee has established two approaches for ADR: de-
orbiting to reentry for low Earth orbits or re-orbiting to graveyard regions for higher altitude orbits.7 Con-
ceptually, ADR can be broadly decomposed into methods which involve (i) passive/active devices onboard
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the spacecraft for post-mission disposal, (ii) sublimation of the debris, or (iii) �capture� and maneuvering
of the debris.8,9 Methodology (i) involves devices integrated into the spacecraft and thus are applicable to
future missions; methodology (ii) typically involves high powered ground-based or space-based lasers and
pose signi�cant technical and legal challenges. Methodology (iii) is by far the most practical ADR for ex-
isting debris and have received signi�cant interest from the community. Methodology (iii) can be further
decomposed into contact or non-contact capture approaches, where the prevailing ideas of the non-contact
approach is the �electrostatic tractor�. For example, previous results10�17 have examined the use of Coulomb
forces (e.g., using EP) as a non-contact means of one satellite exerting forces on another satellite for missions
such as debris removal, formation management, etc.

This paper examines the electrostatic tractor problem via a two-player non-cooperative zero-sum-game
despite uncertainty in the disabled satellite (DS), including the uncertain non-contact interaction force
function. Motivated by the desire to develop a feedback policy, an approximate dynamic programming
(ADP) method inspired by our general result18 is pursued for an in�nite horizon control a�ne mini-max game,
where reinforcement learning methods are used to approximate the unknown value function (i.e., the solution
to the Hamilton-Jacobi-Isaacs (HJI) equation).19,20 To address computational concerns, a state following
(StaF)21,22 neural network architecture is used. Moreover, the Bellman error (BE) resulting from the use of
actor-critic estimates of the value function is evaluated through a simulation of experience approach23 to yield
simultaneous exploration and exploitation. This approach yields a �nite time su�cient excitation condition
(as opposed to a persistent excitation (PE)) that can be checked online from an eigenvalue condition. Unlike
typical pursuit-evasion and reach-avoid games,23�41 the electrostatic tractor problem involves an additional
step of regulation to a new orbital state after target interception of the non-cooperative player. A Lyapunov-
like stability analysis is performed to conclude that the optimal policy is approximated and the orbital
state is changed to a desired state within some residual error (i.e., uniformly ultimately bounded (UUB)
convergence). Initial simulations are provided using a potential �eld to represent distance based Coulomb
forces between the service satellite (SS) and DS. Additional e�orts will focus on also compensating for
uncertain SS dynamics, including more realistic electrostatic forces in the simulation, and generalizing the
development to consider the ability of electrostatic forces to pull and push the DS (e.g., the current paper
relies on the SS to move in a manner that accounts for one-directional Coulomb forces).

II. Problem Formulation

The objective is for a SS to approach and impart forces on a DS to change the orbital state of the DS,
denoted by z : Rt≥t0 → Rn, to a desired orbital state, denoted byzg ∈ Rn, while minimizing the cost to
perform such an action using a feedback policy, despite uncertainty in the DS dynamics and the interaction
between the SS and DS. The error terms e1 ∈ Rn and e2 ∈ Rn , de�ned as

e1 , z (t)− (η (t)− rd) (1)

e2 , ((η (t)− rd)− zg)− k1 (z (t)− zg) . (2)

The error systems described in (1) and (2) quantify the objective of the SS to intercept the DS at a constant
stando� distancea, denoted by rd ∈ Rn, and the SS's objective to regulate the DS's orbital state, respectively,
where η : Rt≥t0 → Rn denotes the orbit state of the SS, k1 ∈ R>1 is a positive constant, and t0 ∈ R≥0 is
the initial time. To facilitate the subsequent development, after some algebraic manipulation, the DS and
SS orbital states can be expressed in terms of the errors in (1) and (2) as

z (t) =
1

(1− k1)
(e1 + e2) + zg, (3)

η (t) =
1

(1− k1)
(k1e1 + e2) + rd + zg. (4)

ż (t) = f (z (t) , η (t) , t) , (5)

aThe stando� distance is a user de�ned term that that is su�ciently small enough to allow the SS to exert orbital correction
forces on the DS while avoiding collision.
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η̇ (t) = h (η (t)) + g (z (t) , η (t))u (t) , (6)

respectively, where f : Rn×Rn×Rt≥t0 → Rn denotes the unknown drift dynamics which are locally Lipschitz
in the states and continuous in t, h : Rn ×Rn → Rn denotes the unknown locally Lipschitz continuous drift
dynamics, g : Rn → Rn×m is the known control e�ectiveness matrix, and u : R≥t0 → Rm is the control
input for the SS. The structure of (5) represents the interaction forces imparted by SS that depend on the
state of the DS and an additional exogenous dynamic (e.g., time-varying forces exerted on the DS from an
EP system on the SS). For simplicity, and as often done in min-max di�erential game literature,19,20 the
dynamics in (5) are expressed as an equivalent exogenous disturbance d : R≥t0 → Rn given by

ż (t) = d (t) , f (z (t) , η (t) , t) . (7)

The dynamics in (6) and (7) can be combined into a compact form that facilitates the subsequent development
as

ẋ (t) = F (x (t)) +G (x (t))u (t) +Kd (t) , (8)

where x (t) ,
[
eT1 (t) , eT2 (t)

]T ∈ R2n is a concatenated state vector. F : R2n → R2n, G : R2n → R2n×m,
K ∈ R2n×n are de�ned as

F (x (t)) ,

[
−h (s1 (x (t)) , s2 (x (t)))

h (s1 (x (t)) , s2 (x (t)))

]
, (9)

GT (x (t)) ,
[
−g (s1 (x (t)) , s2 (x (t)))

T
, g (s1 (x (t)) , s2 (x (t)))

T
]T
, andKT ,

[
In ,−k1In

]T
, where

s1, s2 : R2n → Rn are auxiliary terms de�ned as s1 (x (t)) , z (t) and s2 (x (t)) , η (t). The dynamics of
F (x (t)) are assumed to be locally Lipschitz continuous, and, hence, ‖F (x)‖ ≤ L ‖x‖ where L ∈ R≥0 is the
Lipschitz constant.

III. Approximate Optimal Control Development

To quantify the trade-o� between the goal of changing the orbital state and the control e�ort required to
achieve the goal, a cost function is formulated as a two-player zero-sum game with the SS controller being
the minimizing player and the disturbance dynamics of the DS being the maximizing player. Speci�cally,
the in�nite horizon quadratic cost function is de�ned as

J (x, u, d, t0) ,
∫ ∞
t0

r (x (τ) , u (τ) , d (τ)) dτ, (10)

which is under the constraint of the dynamics in (8), where the instantaneous cost function r : R2n ×Rm ×
Rn → R≥0 is de�ned as r (x(t), u(t), d(t)) , Q(x(t)) + uT (t)Ru(t)− γ2dT (t)d(t), where Q : R2n → R≥0 is a

user-de�nedb positive de�nite weight matrix of the states (i.e., q ‖x‖2 ≤ Q (x) ≤ q ‖x‖2 where q, q ∈ R>0 are
known positive constants), R ∈ Rm×m is a positive de�nite symmetric weight matrix of the control input,
and γ ∈ R>0 is a constant gain. Motivated to develop a feedback policy (i.e., rather than a numerical solution
that is executed in open-loop over a �nite horizon), a dynamic programming approach is pursued. However,
given the uncertain dynamics of the DS, and the fact that the optimal value function V ∗ : R2n → R≥0,
de�ned as

V ∗ (x (t)) , min
u(τ)

max
d(τ)

∫ ∞
t

r (x (τ) , u (τ) , d (τ)) dτ, (11)

is unknown, an ADP solution is sought. Speci�cally, the optimal value function is characterized by the HJI
equation 31,42�45

0 = r (x (t) , u∗ (x (t)) , d∗ (t)) +∇V ∗ (x (t))F (x (t)) (12)

+∇V ∗ (x (t)) (G (x (t))u∗ (x (t)) +Kd∗ (x (t))) ,

bFor example, let Q(x(t)) , xT (t)Qcx(t) with the positive de�nite symmetric constant matrix Qc ∈ R2n×2n.
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for all t ∈ R≥t0 with V ∗ (0) = 0, where ∇V is de�ned as ∇V , ∂V (x)
∂x .c If a solution to (12) exists in which

V ∗ (x) ≥ 0 , then the optimal SS control policy and worst-case DS disturbing policy can be determined by
solving

0 = min
u

max
d

(r (x (t) , u∗ (x (t)) , d∗ (t)) +∇V ∗ (x (t)) (F (x (t)) +G (x (t))u∗ (x (t)) +K (x (t)) d∗ (x (t)))) ,

where the optimal SS policy, u∗ : R2n → Rm, is

u∗ = −1

2
R−1GT (x) (∇V ∗ (x (t)))

T
, (13)

and the worst-case DS policy, d∗ : R2n → Rn, is

d∗ (x) =
1

2γ2
KT∇V ∗ (x (t))

T
. (14)

Motivated by computational concerns (i.e., the Bellman curse of dimensionality) and previous results,22

computationally e�cient state-following (StaF) kernels are used to approximate the unknown value function.
To facilitate the StaF kernel development, let Br (x) be the closure of an open ball of radius r ∈ R>0 centered
at x, with y ∈ Br (x) and c (x) ∈ Br (x), where c : χ→ χP are state-following centers around x ∈ χ for the
compact domain χ ⊂ R2n. The notation ‖(·)‖ is de�ned as ‖(·)‖ , supξ∈Bζ ‖(·)‖ . Speci�cally, the optimal
value function, optimal SS policy, and worst-case DS policy can be expressed as

V ∗ (x) = W (x)
T
σ (c (x)) + εW (x) , (15)

u∗ (x) = −R
−1GT (x)

2

(
∇σ (c (x))

T
W (x) + εW (x)

T
)
, (16)

d∗ (x) =
KT

2γ2

(
∇σ (c (x))

T
W (x) + εTW (x)

)
, (17)

respectively, whereW : χ→ RP is the vector of continuously di�erentiable ideal StaF weights, σ : χ×χ→ RP
is a bounded vector of continuously di�erentiable nonlinear kernels, εv : χ × χ → R is a continuously
di�erentiable function approximation error, and εW (x, y) , σ (y, c (x))

T ∇W (x) + ∇εv (x, y) . Based on
the structure of (15), ‖∇V ∗ (x)‖ ≤ α ‖x‖ ∀x ∈ Rn, where α ∈ R>0 is a constant d. By invoking the
Stone-Weierstrass approximation theorem,47 approximations for (15)-(17), denoted by V̂ : R2n × RP → R,
û : R2n × RP → Rm, and d̂ : R2n × RP → Rn, respectively, are

V̂
(
x, Ŵc

)
= ŴT

c σ (c (x)) , (18)

û
(
x, Ŵa

)
= −R

−1GT (x)

2
∇σ (c (x))

T
Ŵa, (19)

d̂
(
x, Ŵd

)
=
KT

2γ2
∇σ (c (x))

T
Ŵd, (20)

where Ŵc, Ŵa, Ŵd ∈ RP denote the critic, actor, and disturbance weight estimates, respectively. After
replacing (15)-(17) with (18)-(20), the resulting Bellman error (BE) (i.e., a measure of optimality23) is

δt

(
x, Ŵc, Ŵa, Ŵd

)
= r

(
x, û

(
x, Ŵa

)
, d̂
(
x, Ŵd

))
(21)

+∇V̂
(
x, Ŵc

)(
F (x) +G (x) û

(
x, Ŵa

)
+Kd̂

(
x, Ŵd

))
, (22)

cThe HJI in (12) requires knowledge of the DS and SS drift dynamics. Future work will utilize system identi�cation to
characterize the drift dynamics using the universal function approximation property.46

dPrevious results29 assume that ∇V ∗ (x) is bounded by a constant as ‖∇V ∗ (x)‖ ≤ α. This assumption is generalized in this
paper due to the use of the additional state dependent terms from the StaF method.
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where δt : R2n×RP ×RP ×RP → R. The subscript t is used to indicate that (22) is the instantaneous form of
the BE. Speci�cally, it is the on-policy BE evaluated at each time instance with the current weight parameter
estimates Ŵc (t) , Ŵa (t), and Ŵd (t). If only the instantaneous BE were used to update the weight estimates,
then the traditional integral-based persistence of excitation (PE) requirement48 would be required to identify
the value function. Motivated by the desire to relax the integral PE condition, a learning by simulation of
experience strategy23,49,50 is used for o�-policy evaluation of the BE in the region of Br (x), yielding virtual
excitation. The extrapolated BE, δti (t), includes the subscript i to indicate the ith extrapolation point, and
is otherwise de�ned as in (22) with Ŵci (t) , Ŵai (t), and Ŵdi (t). The instantaneous and extrapolated BE
forms provide (on-policy and o�-policy) measures of optimality that are used to adjust the actor and critic
estimates in (18)-(20) through the following update laws

˙̂
Wc (t) = −Γc (t)

kc1
N + 1

ω (t)

ρ2 (t)
δt (t)− Γc (t)

kc2
N + 1

N∑
i=1

ωi (t)

ρ2
i (t)

δti (t) , (23)

˙̂
Wa (t) = proj

{
−Kaka1

(
Ŵa (t)− Ŵc (t)

)}
, (24)

˙̂
Wd (t) = proj

{
−Kdkd1

(
Ŵd (t)− Ŵc (t)

)}
, (25)

where ω (t) , ∇σ (x (t) , c (x (t)))
(
F (x (t)) +G (x (t)) û

(
x (t) , Ŵa (t)

)
+Kd̂

(
x (t) , Ŵd (t)

))
, Γc (t) ∈ RP×P

is a positive de�nite least squares gain matrix updated bye

Γ̇c (t) = βcΓc (t)− Γc (t)
kc1

N + 1

ω (t)ωT (t)

ρ2 (t)
Γc (t)− Γc (t)

kc2
N + 1

N∑
i=1

ωi (t)ωTi (t)

ρ2
i (t)

Γc (t) , (26)

where ρ (t) ,
√

1 + γ1ωT (t)ω (t) and ρi (t) ,
√

1 + γ1ωTi (t)ωi (t), kc1, kc2, γ1, βc, ka1, kd1 ∈ R>0 are
learning gains, Ka,Kd ∈ RP×P are positive de�nite symmetric gain matrices, and N ∈ R is the number of
StaF kernels. The advantage of the learning by simulation of experience strategy and the resulting updates
laws in (23)-(26) is that the traditional integral PE condition (see (29)) can be relaxed to the broader set of
su�cient excitation conditions (see (27)-(29)) in the following assumption, which can be validated on-line.

Assumption 1. 23,50There exists a strictly positive T ∈ R>0 and at least one strictly positive constant
c1, c2 ∈ R≥0, or c3 ∈ R≥0 such that

c1IL ≤ inf
t∈R≥t0

1

N + 1

N∑
i=1

ωi (t)ωTi (t)

ρ2
i (t)

, (27)

c2IL ≤
∫ t+T

t

(
1

N + 1

N∑
i=1

ωi (τ)ωTi (τ)

ρ2
i (τ)

)
dτ, ∀t ∈ R≥t0 , (28)

c3IL ≤
∫ t+T

t

(
1

N + 1

ω (τ)ωT (τ)

ρ2 (τ)

)
dτ, ∀t ∈ R≥t0 . (29)

IV. Stability Analysis

A Lyapunov-based stability analysis is provided in this section to examine the convergence of a stacked

vector of the closed-loop orbital transfer and function approximation errors de�ned as ZL ,
[
xT , W̃T

c , W̃
T
a , W̃

T
d

]T
∈

R2n+3P , where the function approximation error notation (̃·) , (·)− (̂·). To facilitate the subsequent analysis,
eThe gain matrix Γc (t) is positive de�nate ( ΓcIP ≤ Γc (t) ≤ ΓcIP , where Γc,Γc ∈ R>0 are constant bounds) provided

λmin {Γc (t0)} > 0.51
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the auxiliary terms κ, ι ∈ R>0 are de�ned as κ , 1
8 min

{
q, kc2c, ka1, kd1

}
, and ι , ι2x

q +
ι2c
kc2

+
ι2a
ka1

+
ι2d
kd1

. The

constants c, ιx, ιc, ιa, ιd ∈ R>0 are de�ned as c ,
(

βc
2kc2Γc

+
c1
2

)
,

ιx ,
α

2

∥∥∥∥Kγ∇σT Ŵd −
1

2
GR∇σT Ŵa

∥∥∥∥ ,

ιc ,
1

Γc
‖∇W‖

(
L ‖x‖+

∥∥∥∥1

2
Kγ∇σT Ŵd −

1

2
GR∇σT Ŵa

∥∥∥∥)
+

max {kc1, kc2}
2
√
γc

(
‖∆‖+

1

4

∥∥∥W̃a

∥∥∥‖Gσ‖∥∥∥W̃a

∥∥∥+
1

4

∥∥∥W̃d

∥∥∥‖Kσ‖
∥∥∥W̃d

∥∥∥) ,

ιa ,
1

λmin {Ka}
‖∇W‖

(
L ‖x‖+

∥∥∥∥1

2
Kγ∇σT Ŵd −

1

2
GR∇σT Ŵa

∥∥∥∥) ,
and

ιd ,
1

λmin {Kd}
‖∇W‖

(
L ‖x‖+

∥∥∥∥1

2
Kγ∇σT Ŵd −

1

2
GR∇σT Ŵa

∥∥∥∥) ,
where Gσ , ∇σGR∇σT , Kσ , ∇σKγ∇σT , GR , GR−1GT , Kγ , 1

γ2KK
T , and

∆ , εW

(
1

4
GR−1GT − 1

4

1

γ2
KKT

)
εTW − εWF +

1

2
εWGR

−1GT∇σTW − 1

2
εW

1

γ2
KKT∇σTW,

so that ‖∆‖ and ‖∆i‖ decrease as ‖∇W‖, ‖∇εv‖, and ‖∇εv,i‖ decrease.

Theorem 1. Provided Assumption 1 is satis�ed and the following su�cient conditions hold

q ≥ 1

2
α2

∥∥∥∥(GR−1GT − 1

γ2
KKT

)∥∥∥∥ , (30)

c ≥ ka1 + kd1

kc2
, (31)

√
ι

κ
≤ v−1

l (vl (ζ)) , (32)

then the feedback policies in (18)-(20) and update laws in (23)-(26) are bounded, and the closed-loop error
systems are uniformly ultimately bounded in the sense that [52, Theorem 4.18]

lim sup
t→∞

‖ZL (t)‖ ≤ v−1
l

(
vl

(√
ι

κ

))
. (33)

Proof. Consider the Lyapunov function candidate VL : R2n+3P × R≥t0 → R≥0 de�ned as

VL (ZL, t) , V ∗ (x) +
1

2
W̃T
c Γ−1

c (t) W̃c +
1

2
W̃T
a K

−1
a W̃a +

1

2
W̃T
d K

−1
d W̃d, (34)

which can be bounded by class K functions vl, vl : R→ R≥0 as

vl (‖ZL‖) ≤ VL (ZL, t) ≤ vl (‖ZL‖) . (35)

Taking the time-derivative of (34) along its trajectory results in
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V̇L (ZL, t) = ∇V ∗
(
F +Gû+Kd̂

)
+ W̃T

c Γ−1
c

(
Ẇ − ˙̂

Wc

)
(36)

− 1

2
W̃T
c

(
Γ−1
c Γ̇cΓ

−1
c

)
W̃c + W̃T

a K
−1
a

(
Ẇ − ˙̂

Wa

)
+ W̃T

d K
−1
d

(
Ẇ − ˙̂

Wd

)
Substituting (22)-(25), using Assumption 1, and performing some algebraic manipulation results in the
following inequality

V̇L (ZL, t) ≤ −κ ‖ZL‖2 −
(
κ ‖ZL‖2 − ι

)
(37)

provided the su�cient conditions in (30)-(32) are satis�ed. Based on (37) the result in (33) can be obtained.
Furthermore, from (34) and (37), we can conclude that ‖ZL‖ ∈ L∞. Using this fact, the approximate
controller can shown to be bounded.

V. Simulation Results

An initial simulation with several simplifying assumptions is used to demonstrate the feasibility of the
developed controller and estimation methods. Since Coulomb forces (e.g., using the Debye-Huckel approxi-
mation53) are a function of the distance between the two bodies, the dynamics of the DS were modeled as a
disturbed potential �eld as

ż (t) = AΦ1 (x (t)) +BΦ2 (x (t)) + ωr (t) , (38)

where A ,

 12 −4.8 8

6 12 2

−12 4 3.6

, B ,

 0.6 −6 4.5

7.2 0.3 3

−4.5 2.7 7.5

, Φ1 (x (t)) , (z (t)− η (t)) exp
(
−|z(t)−η(t)|2

2

)
,

Φ2 (x (t)) , (z (t)− zg) exp
(
−|z(t)−zg|2

8

)
, and ωr (t) is an exogenous disturbance selected from a uniform

distribution of U [0, 5] 13×1 at each time step. The SS dynamics in (6) are selected as h (z (t) , η (t)) ,[
0 0 0

]T
, and g (η (t)) = I3. The orbital components of Hill's reference frame are ignored and the

control input into the SS is the velocity of the spacecraft given by u (t) ,
[
ux uy uz

]T
,where ux is the

commanded x-component of the velocity of the SS, uy is the commanded y-component of the velocity of the
SS, and uz is the commanded z-component of the velocity of the SS. The x-axis points from the center of the
Earth to the origin of the system (which moves along a circular orbit), the y-axis is along the orbital track,
and the z-axis completes a right-hand Cartesian coordinate system. While ignoring the orbital components
of of Hill's reference frame is unrealistic, the assumption is made to bifurcate the controller and spacecraft
dynamics to quantify the controller performance. Additional simulation e�orts target spacecraft dynamics in
the Hill reference frame and use the force generated by the spacecraft's thrusters as a control input. Any spin
induced on either the SS or DS is assumed to be internally stabilized using reaction wheels or control moment
gyroscopes. This simplifying assumption clearly does not hold for problems such as de-tumbling space debris
without including the electrostatic torques induced on the spacecraft. However, for the purposes of this
development, torques are ignored to simplify the problem and show a proof-of-concept that an ADP-based
controller can be used to herd EP satellite systems.

For function approximation, the StaF basis is selected as (x, c (x)) = [σ1 (x, c1 (x)) , . . . , σ7 (x, c7 (x))]
T
,

where σi (x (t) , ci (x (t))) = xT (t) (x (t) + 0.05ν (x (t)) di) , ν (x (t)) = xT x
(1+xT x)

, and di are the vertices of a

4-simplex. To perform BE extrapolation, a single trajectory xi (x (t) , t) is selected at random from a uniform
distribution over a 0.05ν (x (t))× 0.05ν (x (t)) square centered at the current state x (t) . Three points were
used in BE extrapolation.

Initial conditions, user de�ned cost parameters, and learning gains given in Table 1, the SS successfully
regulates itself to an o�set from the goal location, zg + rd and regulates the DS to the goal location, zg.
The trajectories of the DS and SS are shown in Figure 1. The concatenated error states, x (t) , are shown to
converge to the origin in Figure 2, and RMS error values of each state are shown in Table 2: di�erent results
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would result from di�erent initial conditions of the SS and DS. The states of the SS and DS are shown in
Figures 3 and 4, respectively. These �gures indicate that the SS converges toward zg in approximately �ve
seconds, and tracks the DS over a smaller distance than it did in the initial �ve seconds. Figure 5 shows the
error between the magnitude of rd and ‖η (t)− z (t)‖. Furthermore, the di�erence in states, η (t)− z (t) , is
depicted in Figure 6, indicating the desired stando� distance is maintained. The control e�ort is plotted in
Figure 7. After intercepting the DS, the SS has a nonzero control input due to the disturbance in (38) and
the nonzero interaction force between the SS and DS. Figure 7 shows the DS disturbing policy that governs
the disturbing input of the augmented system dynamics in (8).

Table 1. Simulation initial conditions and parameters.

Initial conditions at t0 = 0

z (0) = [−3, 2, 2]
T
, η (0) = [5, 5,−5]

T
,

rd = [−1,−0.75, 0.5]
T
, zg = [1, 0.75,−0.5]

T
,

Ŵc (0) = 0.1× 17×1, Ŵa (0) = 100× 17×1,

Ŵd (0) = 100× 17×1,Γc (0) = 0.5I7.

Penalizing parameters

r (x(t), u(t), d(t)) , xTQxx+uT (t)Ru(t)−γ2dT (t)d(t),

Qx = diag {100, 100, 100, 100, 100, 100} ,
R = diag {0.09, 0.09, 0.09} , γ = 2.

Gains and parameters for ADP update laws

kc1 = 0.01, kc2 = 0.75, ka1 = 0.5, ka2 = 0.75,

kd1 = 0.5, kd2 = 0.005, β = 0.01,

βc = 0.001,Ka = I5, Kd = I5.

Figure 1. Trajectory of the SS and DS. The SS (red dot) intercepts and drives the DS (blue dot) to the desired
state.
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Figure 2. Concatenated state vector.

Table 2. RMS error values of state vector

State Value

x1RMS 0.434

x2RMS 0.145

x3RMS 0.233

x4RMS 0.509

x5RMS 0.134

x6RMS 0.267

Figure 3. Position of the SS.
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Figure 4. Position of the DS.

0 2 4 6 8 10

Time (sec)

-8

-6

-4

-2

0

‖r
d
‖
−
‖
η
(t
)
−
z
(t
)‖

Figure 5. Error of the desired distance of the SS from the DS.

Figure 6. Di�erence between η (t) and z (t) .
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Figure 7. SS control policy.

Figure 8. DS disturbing policy.

VI. Conclusion

A two-player non-cooperative zero-sum-game is formulated for a SS to intercept and regulate the orbital
state of a DS. A StaF-based ADP method was used to approximate the unknown dynamics of the DS, includ-
ing the uncertainty in the interaction forces with the SS, and the unknown value function. Reinforcement
learning and a BE extrapolation method are used to identify the unknown dynamics provided a mild su�-
cient excitation condition is satis�ed. A Lyapunov-based analysis is used to conclude uniformly ultimately
bounded steady-state approximation and regulation errors. Initial simulations demonstrate the feasibility
and performance of the developed controller under a set of simplifying assumptions. Additional e�orts will
target also including uncertainties in the SS dynamics, and including a more realistic Coulomb force model
that may allow for the SS to exert pushing and pulling forces on the DS.
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