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In this paper we lay the foundations for attitude control and simultaneous
mode estimation of highly flexible spacecraft. Adaptive control (AC)
combined with integral concurrent learning (ICL) enable quantifiable finite
time excitation of the system while it is being controlled, thus providing
convergence of unknown or uncertain parameters to their true values.
Rigorous Lyapunov proofs are provided, guaranteeing stability of the
controlled system and convergence of the unknown parameters. The focus is
controlling the spacecraft attitude and using the behavior of key locations of
' most flexible components (i.e., the extremities), setting the natural
frequencies and damping ratios as the uncertain parameters to estimate. The
preliminary results here presented are encouraging and we envision this
technique to be transformative in the way we control flexible space structures
with uncertain structural characteristics. This work is motivated by the Air
Force Space Solar Power Incremental Demonstrations and Research
(SSPIDR) project, and more generally, future spacecraft with deployable and
large flexible appendages.

INTRODUCTION

Standard techniques to operate flexible spacecraft separate control and estimation, as presented,
for example, by the Air Force Research Laboratory (AFRL) in reference 1. Several researchers
approach the control problem by assuming a good knowledge of the modes of vibration for the
system, compensating for uncertainties using feedback controllers whose performances are affected
by the level of uncertainty (see, for example reference 2). Others focus only on on-orbit modes
estimation, as seen in references 3 and 4; note that these references are decades apart.

This paper investigates the possibility to perform attitude control for a flexible spacecraft and
simultaneously estimate, via finite time quantifiable excitation, the main parameters related to its
flexible dynamics. The authors have recently demonstrated the preliminary potential of adaptive
control combined with integral concurrent learning for underactuated spacecraft exploiting only
natural forces and torques to control within a formation (5-7).

The motivation for this paper originates from a renewed interest in space structures and
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particularly spacecraft equipped with deployables, whose flexible dynamics will present a wide
range of frequencies and amplitudes of deformation (Figure 1).

AFRL’s Space Solar Power Incremental and
Demonstrations Research Project (SSPIDR) D3 CubeSat designed by the
ADAMUS laboratory
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Figure 1 Examples of future and current spacecraft missions involving flexible
deployables (top, left and right respectively) and recent Air Force facilities committed to the
characterization of elastic space systems (bottom).

To support the previous statement, we note that the AFRL Space Vehicle Directorate recently
opened the new Deployable Structures Laboratory, or DeSeL (reference 8 and Figure 1). DeSeLL
represents the state-of-the-art technology for on-the-ground experimentation of deployable
systems. An active Gravity Off-Load Follower (GOLF) cart system is being currently developed,
intended to have three degrees of freedom (attitude motion) which could foreseeably provide the
capability for large low-frequency motions.

Past examples of deployable spacecraft include the Deployable Optical Telescope (DOT, 9-10);
more than a decade ago a substantial effort was undertaken to ground-test part of the system, but
only for high frequencies, low amplitude deformations. The Mid-Deck Active Control Experiment
(MACE, 11) is an AFRL example of flexible system control using a small-scale experiment on the
Space Shuttle. Today’s counterpart for this approach is the CubeSat format (12).

Large space structures and those with high dimensional ratio between deployed and stowed
configurations are extremely difficult to test on the ground; the above mentioned SSPIDR and Drag
Deorbit Device (D3; reference 13) missions fall under this category, and their operations would
benefit from a real-time on-board estimation of the flexible behavior.

This paper aims at creating the foundations for attitude/orbit maneuvering/excitation and
simultaneous mode estimation of highly flexible spacecraft, enabling on-orbit autonomous testing
of the entire structure, thus saving cost and time on the ground, and capturing unknown deviations
from computer models that may be caused by poor modeling, storage, and launch stresses.

The paper is organized as follows: we first present a commonly used dynamics model for



spacecraft equipped with flexible appendages, then proceed to introducing a simplified study case,
where actual displacements are used in the dynamics, instead of modal coordinates. After the
dynamics sections the paper proceeds to illustrate the proposed adaptive control law with integral
concurrent learning, along with Lyapunov stability proof. A sample numerical simulation is
presented before drawing conclusions and discussing future work.

COMMONLY USED MODEL FOR FLEXIBLE SPACECRAFT

The attitude dynamics of spacecraft with flexible components are often modeled as a rigid body
connected through springs and dampers to point masses distributed throughout the flexible
appendage(s), which are also connected to each other according to the spacecraft geometry. A
commonly used simplified model is expressed in terms of the modal coordinates, which are a linear
combination of the point mass(es) displacement(s) and decouple the dynamics of flexible
appendages. The dynamics have the form:

J: Total inertia matrix
w: inertial angular velocity
3 - . : vector of modal coordinates
Jo + 6T17 ==X (]w + 5Tn) tu g: coupling matrix
N+Cn+Kn=-6w u: external torques
C: damping matrix
K: stiffness matrix

Natural  frequencies and  damping
coefficients associated with flexible modes
are contained in matrices C and K

Equation 1

Modal coordinates and matrices C and K can be approximately obtained using different
methods. However, they are subject to uncertainty due to modeling simplifications and structural
changes during storage, launch and/or deployment, among others. If such uncertainties are
considered to design an attitude controller, the use of actual displacements instead of modal
coordinates is desired, since they can be directly measured by placing sensors on the structure. This
work proposes the use a dynamic model in terms of the displacements to design an adaptive
controller that incorporates Integral Concurrent Learning into the adaptation law to provide online
estimation of uncertain parameters while controlling the spacecraft attitude.

A SIMPLIFIED DEFORMATION-BASED MODEL FOR FLEXIBLE SPACECRAFT

Consider a simplified example of a spacecraft with its main rigid body connected to a flexible
appendage including a mass, spring, and damper, as shown in Figure 2. The model for this
spacecraft has the form:

Jo+jw+8Ti+wx(Jo+6"x)=u
mi + Cx + Kx — 2mw? — 2mlw,w, — 205 = 8@
Equation 2

where m is the point mass representing the inertia of the flexible appendage, x its displacement
due to flexibility, and [ the distance between the spacecraft main body and the axis of displacement.
Additionally, § = [0 0 —Im], | = Js + J,,, where J is the inertia matrix of main hub, and J,,
the contribution of m to the inertia matrix. Note that C and K are not diagonal matrices (in the single
mass-spring-damper case they are scalars).
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Figure 2 single mass-spring-damper model for a spacecraft with a flexible appendage.

Neglecting second order coupling terms we get:
Jo+[o+8Ti+wx(J'o+6T%)=u
mi+Cx+Kx = —-éw

Consider € and K being uncertain. Moreover, the exact location of the point mass (1), as well as
the mass (m) are not accurately known. Note that J;, and & depend on m and I, then J* and J* are
also uncertain. If the orientation of the spacecraft is represented with the quaternion g, then the
attitude mismatch with respect to a desired orientation g4 can be expressed as the error quaternion
e, which obeys the following kinematics for its vector and scalar parts

, 1 ~
e, = E(e,f + egl3) o,
1

e, = —E e,w,

Equation 3

where @ = w — Rwg, wq is the desired angular velocity and R is the rotation matrix from the
desired to the actual body frame.

The simplified model presented in this section could be expanded to multiple mass-spring-
damper systems, installed at different locations and different orientations with respect to the main
hub. Despite being beyond the scope of this paper, this approach would enable deformation-based
modeling of the system, where the lump parameter subsystems are not fully known but can be
estimated online, as described in the remainder of the paper.



CONTROL APPROACH

The control objective is to correct for quaternion errors, that is: R — I5, in the presence of
uncertainty in m, [, C and K. Additionally, we intend to identify the uncertainties online. Let us
define the auxiliary state r = @ + ae,,, where a is a positive definite, constant control gain matrix.
Driving  — 0 is sufficient to drive R — I5. Taking the time derivative of r, pre-multiplying by J,
and substituting the dynamics, we obtain the open-loop error system:

Jsi' = =0 X (Jyo + J1n00 + %) = J 1o + 87 (- x + =) = J5 (Rwg + Radg ) +J e, +u

Equation 4
Where the terms in red are uncertain. We then define the following linear parameterization
. % . % K C . .
Y(x,% )0 = —w X (Jj,0 + 6T%) — [0 + 67 (;x + ;x) Equation 5
and

0= []mxxr ]mxy' ]mxz' ]myy' ]myzr ]mzzr]mxx' ]mxyr ]mxzr ]myyr ]myz' ]mzz'
81C 8,C 83C 51K 85K 83K .
6T’L’L’L’L’Z_’3_ ]TE [RZ]- Equat10n6
Assumption 1: the vector O is constant, e.g., it contains the mean of the inertia components.

We propose the following control law:
u=wxJw+]j; (ﬁwd + iéa»d) —Jsae, — YO — Be, — K1 Equation 7

where K; is a positive definite, constant control gain matrix, £ is a positive, constant control

gain, and O is the estimate of ®. To design ®, we define the following integrals over a time window
of size At

t

YL, t) = f Y(o)do

t—At
t . 5
UL, ) = f [4(0) -~ w(0) x Jsw(0) - J; (ﬁ(a)wd(a) + R(0)ag(o) — aé,,(a))] do
t—At
Equation 8
and the ICL-based, adaptation law is designed as
0= proj(TY™r + TK;c, Y0, YT (Js(r(t) — r(t — AD) —U; — Y;0) ) Equation 9

where Y; = Y(t;), U; = U;(t;), and T, K;, are positive definite, constant adaptation gains
matrices. The verifiable ICL finite excitation condition considers that there exists a time T, such
that

2ninlZ¥YTYi} =2 for ¢>T Equation 10
where A,,,;,{-} is the minimum eigenvalue of {-}, and 4 is a positive, user defined constant.
Considering the following candidate Lyapunov function

V() = %rT]Sr +Bele, + (1 —ep)? + %@I“lﬁ)
Equation 11



and under the assumption that J;,,, ]T;‘n are physical quantities bounded by known constants, then,
for t < T, the following globally uniformly ultimately bounded result can be obtained:
1yl < €1 exp(—€xt) + €3 Equation 12

where y = [rT eT]7, and €,, €,, and €5 are known, positive constants.

Fort > T, the following globally uniformly ultimately bounded result, including the uncertain
parameters, can be obtained:

llzll < €4 exp(—e€st) + €6
Equation 13

~ T .
where z = [yT OT] , €4, €5, and €4 are positive known constants.

Recall that:
0= []mxx: ]mxy: Jmxz ]myy: ]myz: Jmazz Jmxxr ]mxy: Jmxz ]myy: ]myz: Jmazz

oT —— =~ =2~ = & ]TE]RH
And note that, if the knowledge of © is improved from an inaccurate initial guess, the natural
frequency w,, and damping coefficient { can be recovered since

K C

w, = |— =
n m ¢ 2mw,

NUMERICAL SIMULATION

In this section, the proposed controller is tested without (Sim 1) and with (Sim 2) the ICL in the
adaptation law. The spacecraft is initially tumbling at angular rates of up to 5 RPM and the desired
orientation is alignment with the inertial frame.

To facilitate the tuning process, the size of ® has been reduced by making the following
assumptions:

Assumption 2: The time derivative of J,,, is negligible.
Assumption 3: Only non-zero elements of J,,, are those of its diagonal.
Assumption 4: §; and §, are known zero.

. : 85¢ 83k 1T
The vector of uncertain parameters is then defined as @ = []mxx, JmyyJmzzs 63,%, 37] € R®.

The simulation parameters are:
rad )
(=005w, = 1.09737m =05kgM =200kgK = w; C =2{w, l =0.6m

H=05mW =05mL=1m



Js

0, =[0,0.22,0.12,-0.2,—0.04,—0.6]7
A =4.2x 10718 (Sim 2 only)

1M(H2 +W?)
12
0

0

1
—M(L? + W?
1 Le+w?)

rad
wy = [0.1, _0'5'_0'5]TT qo = [0.8924,-0.99,0.2391,0.3696]7 x, =1x1073m

0

0

0

0
iM(L2 + H?)
12 |

I =3 diag([1,1,1,30,2,10]) (Sim 1), T = 0.8 diag([1,1,1,30,2,10]) (Sim2)
K¢, = 500 diag([0.01,0.01,0.01,0.8,10,1]) (Sim2 only)

K, = 0.005 I5 (Sim 1), K; = 0.01 I5 (Sim 2)
a=0.381;(Sim 1), @ = 0.1 (Sim 2) B = 0.005

estimation of the unknown vector.

The following plots show results of Sim 1 (with the ICL term of the adaptation law turned off)
in terms of orientation (¢q), angular velocity (w), point mass displacement (x), torques (u#) and
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Figure 3 Sim 1 (ICL off) numerical results: spacecraft angular velocity vs desired
angular velocity (top), spacecraft quaternion vs desired quaternion (bottom).
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Figure 4 Sim 1 (ICL off) numerical results: spacecraft control torques.
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Figure 5 Sim 1 (ICL off) numerical results: vector of estimated unknowns vs true values.
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Figure 6 Sim 1 (ICL off) numerical results: lumped mass displacement.

The results from this simulation have shown that the adaptive controller can stabilize the
spacecraft while compensating for the uncertain parameters, however, the final values of the
estimated parameters (solid lines) have clearly converged to values far apart from their real values
(dashed lines). This controller has been tuned so that the applied control effort is similar in
magnitude to that of Sim 2, which includes ICL.

The following plots show results of Sim 2 (with the ICL term of the adaptation law turned on)
in terms of orientation (g), angular velocity (@), point mass displacement (x), torques (u),
estimation of the unknown vector, and finite excitation condition (Amin {’le yi}).
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Figure 7 Sim 2 (ICL on) numerical results: spacecraft angular velocity vs desired
angular velocity (top), spacecraft quaternion vs desired quaternion (bottom).
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Figure 8 Sim 2 (ICL on) numerical results: spacecraft control torques.
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Figure 9 Sim 2 (ICL on) numerical results: vector of estimated unknowns vs true values.
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Figure 10 Sim 2 (ICL on) numerical results: finite excitation condition (eigenvalue in
Equation 10).
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Figure 11 Sim 2 (ICL on) numerical results: lumped mass displacement.
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The controller in Sim 2 required control gains that excited the system much more, as compared
to the non-ICL counterpart. This requirement was noticed due to the small (almost non-existent)
increase of the amplitude of A, {Y7 Y;} with gains similar to those used in Sim 1, indicating that
the system might not be accumulating sufficient knowledge about the model during the transient,
which could result in poor identification of the uncertain parameters. By manipulating the gains,
the resulting controller has a significantly greater activity during the transient, moving the mass
(m) so that its behavior is better captured by the ICL-based adaptation law. The uniformly
ultimately bounded result can be clearly observed since the estimations converged to a vicinity of
their real values, but despite this limitation, the a priori knowledge of ® was clearly improved.

The final wvalue of the vector of uncertain parameters for Sim 2 was 0= [0,
0.178634,0.177981,—0.333368, —0.0584866, —0.670413]7, using these values to recover w,
and ¢ we obtain

w, =14181rad/s , (=0.0619
as opposed to the true values:
w, =1.0973rad/s , {=0.05

The current results are promising and certainly need further investigation to improve the
ultimately bounded result and reduce the estimation errors.

CONCLUSION

Adaptive control combined with integral concurrent learning holds the potential for
simultaneous spacecraft attitude control and estimation of flexible parameters, while on-orbit.
Application examples include input shaping for fast slewing maneuvers (e.g.: re-shaped bang-bang
feedforwards), where a simple feedback or adaptive control would not be sufficient unless the
natural frequencies and damping ratios are known. The next steps include generalization to
dynamics models requiring a generic number of mass-spring-damper subsystems, located at
different orientations and parts of the main spacecraft body. Another topic of future investigation
should be limiting the amplitude for the excitation of the modes, currently not included in the
Lyapunov formulation.
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