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Abstract—This paper presents a control algorithm for three 
axis attitude regulation of a 2U CubeSat by means of gravity 
gradient and atmospheric torques. The inertia tensor of the 
spacecraft is modified to keep the spacecraft in a gravity gradient 
stable configuration. A Lyapunov-based control law acts 
simultaneously to improve the pitch angle regulation performance 
using atmospheric torque.  
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I. INTRODUCTION  
This paper considers the use of natural torques such as 

Aerodynamic Torque (AT) and Gravity Gradient Torque 
(GGT), with application to a 2U CubeSat that incorporates a 
Drag Deorbit Device (D3). 

CubeSats are small spacecraft mainly used in Low Earth 
Orbits (LEO). At LEO, spacecraft interact with a low-density 
atmosphere and experience atmospheric drag. The atmospheric 
drag is commonly considered as a perturbation in the equations 
of motion for an orbiting spacecraft, but it has also been 
exploited to perform relative maneuvers between two or more 
spacecraft using differential drag (e.g., [1], [2], and [3]).  

The primary purpose of a D3 device is to de-orbit a 
spacecraft over unpopulated areas using atmospheric drag once 
the orbital lifetime has finished. The D3 considered in this paper 
has four independent, repeatedly expandable-retractable drag 
surfaces used to modify the cross-wind area, mounted in the 
anti-ram portion of the spacecraft. Missions to perform de-
orbiting and formation flying maneuvers have been designed 
and simulated assuming that all drag surfaces are equally 
deployed at all times, (cf., [4] and [5]). Since each surface is 
controlled independently, it is possible to experience unbalanced 
forces that result in torques with respect to the center of mass of 
the spacecraft.  

Missions involving CubeSats usually require maintaining 
attitude for communication or sensing purposes. In [6], 
atmospheric torque is used in combination with magnetic torque 
to maintain the attitude of a 2U CubeSat within allowable ranges 
for sensing tasks, where a D3 like distribution of fixed drag 
surfaces was implemented to improve the performance of a 
magnetic-based attitude control. Atmospheric torques were also 
used in [7] to develop an adaptive sliding mode control 
algorithm for pitch and yaw angles, while the roll angle was 
controlled using different means. Roto-translational control 
using atmospheric drag has also been studied in results such as 

[8] and [9], where on-off virtual thrusters and a sliding mode 
controller, respectively, were developed through a Lyapunov 
analysis.  

The study of spacecraft attitude dynamics based on natural 
torques is heavily dependent on the spacecraft physical design. 
The distribution and degrees of freedom of the drag surfaces 
directly affect the capability of the spacecraft to control or 
stabilize its attitude. Common designs allow two degrees of 
freedom for each drag surface, e.g expand/retract and rotation 
about an axis, which results in increased complexity and more 
moving parts, both undesirable for real operation.  

In this work, we design a controller to regulate the attitude 
of the spacecraft using a D3 device that provides one degree of 
freedom for each one of its four drag surfaces. The atmospheric 
and gravity gradient torques are included in the dynamic model 
and are used as means to stabilize the CubeSats attitude. The use 
of natural torques to regulate the attitude of a spacecraft 
represents a challenge due to the limited amplitude of these 
torques, necessitating the design of a controller that considers 
input saturation. Moreover, the integration of GGT and AT for 
three axis attitude regulation is also challenging due to their 
mutual dependence, i.e. changing a drag surface’s cross-
sectional area to vary the experienced drag force also changes 
the inertia tensor and vice versa. This paper presents the 
development of a saturated controller through a Lyapunov 
analysis for pitch regulation. Then, the numerical solution to a 
minimization problem with nonlinear constraints is used to 
integrate this controller with stabilization by GGT and achieve 
asymptotic convergence of the three attitude angles.  

II. BACKGROUND 
This section presents the problem statement followed by the 

definition of AT and GGT. A simplified version of a particular 
design of the D3 device is also presented here.   

A. Drag Deorbit Device (D3) 
This paper considers a D3 device designed to be self-

contained and attachable to standard CubeSats. It is installed in 
the anti-ram face of the spacecraft and has four drag surfaces 
each offset by 90 degrees with fixed inclination of 20 degrees 
with respect to the anti-ram face of the spacecraft. The drag 
surfaces are rolled from ���������  thick Austenitic 316 
stainless steel stock, each surface is attached to a drum that is 
driven by a stepper motor. The width and length of the drag 
surfaces are 	�����and 
���� respectively, and the maximum 
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total cross-wind area is approximately������. The 20 degrees 
fixed inclination of the drag surfaces allow the spacecraft to have 
its center of pressure always behind the body of the spacecraft, 
which results in ram alignment. Due to construction tolerances 
and error in the deployment level of each drag surface, the total 
torque with respect to the center of mass of the spacecraft is 
uncertain, resulting in undesired oscillations and even possible 
instability. Moreover, in most operation cases the spacecraft is 
required to have one face pointing to the Earth for 
communication or sensing purposes.   

B. Coordinate Systems 
The orbital reference frame �
��  shown in Fig. 1 and its 

attached coordinate system are defined as follows. The origin is 
located at the center of mass of the spacecraft, the ��� axis points 
from the center of the Earth to the spacecraft center of mass, the ��� axis is aligned with the orbit angular momentum vector and 
the ��� axis completes a right-hand Cartesian coordinate system. 
The body reference frame 
�� is attached to the spacecraft’s 
body, its coordinate system is centered at the spacecraft’s center 
of mass and is aligned with the body’s principal axes of inertia. 
The drag surfaces DS1 through DS4 are also shown in Fig. 1. 

 
Fig. 1 Inertial, orbit and body Coordinate systems definition 

C. Problem Description 
The Advanced Autonomous Multiple Spacecraft 

(ADAMUS) laboratory at University of Florida has been 
conducting research on the use of natural forces for orbit 
maneuvering purposes, such as de-orbiting and formation 
flying. The D3 device has been conceived based on the 
experience acquired from previous research and designs to take 
advantage of the aerodynamic drag in CubeSat missions.  

Inexpensive and simple means to stabilize attitude are 
preferable in CubeSats. The configuration of the drag surfaces 
in the D3 device allows the spacecraft to remain aligned with the 
direction of motion (ram aligned) once they are deployed. Once 
the spacecraft is released into orbit, it needs to be de-tumbled to 
deploy its drag panels. This stage is assumed to be completed 
using magnetic torques and is beyond the scope of this work. For 
more details regarding de-tumbling strategies, see, for example 
[3].  

Once the drag surfaces are deployed and the spacecraft is 
ram aligned, it is important to ensure that the spacecraft’s 
attitude is suitable for communication and/or sensor pointing 
within reasonable levels of accuracy about each of the body 
axes. Using natural torques for this purpose results in power and 
propellant saving and increase in the payload availability.   

D. Atmospheric Torque  
For a spacecraft orbiting in LEO, atmospheric drag is the 

largest non-gravitational force. In LEO, the atmosphere can be 
considered as an interaction with a rarefied gas instead of a 
continuous flow. The rarefied particle interaction with each drag 
surface is assumed to produce specular reflection. The resulting 
drag force ��� is  

��� � ������ ��������� (1) 

where �� is the drag coefficient, � is the atmospheric density, � 
and �� are the drag surface’s area and spacecraft’s mass 
respectively, �� is the component of the spacecraft’s velocity 
relative to the atmosphere that is perpendicular to the drag 
surface, and ���  is the unit vector in the direction of ��� . The 
atmospheric density � is the main source of uncertainty for the 
drag force. Although there are several models for the 
atmospheric density, it is known that the solar and geomagnetic 
activity produce changes that are difficult to model and predict. 
Therefore, most of the available models are empirical.  

The assumption of specular reflection allows the force 
produced by atmospheric drag to be modeled as a single force 
applied at the geometric center of the deployed portion of each 
drag surface. Therefore, by having different deployment levels 
of opposite drag surfaces, it is possible to create atmospheric 
torque with respect to the center of mass of the spacecraft. 

Assuming that the spacecraft is in a circular orbit, the 
velocity vector of the spacecraft with respect to the atmosphere ��  is defined in the orbit reference frame as  

�� � !���" �  
(2) 

and in the body reference frame as 

�� � �#$ !���" � � ! %&%'()(&%' � %)('%)(&%' * ()('" �  
(3) 

 

where �#$+ defined as  

�#$ � ! %&%' %&(' �(&()(&%' � %)(' ()(&(' * %)%' ()%&%)(&%' * ()(' %)(&(' � ()%' %)%&" 
(4) 

 

is the direction cosine matrix from the orbit to the body reference 
frame using a 3-2-1 Euler angles rotation sequence, the angles )+ &+ ' are called roll, pitch and yaw respectively, where %
,� �-./
,� and (
,� � /01�
,�.  

The unit vector ��� for the drag surface labeled as DS1 in Fig. 
1 is defined in the body frame as ���+� � 2%��3+ �+ (��345 . The 
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magnitude of ��  along the direction ���+�  is given by ���+� � �� , ���+�, then ��+� � 6%��3%&%' * (��3
%)(&%' * ()('�7� � (5) 

Similarly, we can obtain the normal components for each drag 
surface ��+� � 6%��3%&%' * (��3
()(&%' � %)('�7�  (6) 

��+� � 6%��3%&%' � (��3
%)(&%' * ()('�7�  (7) 

��+8 � 6%��3%&%' � (��3
()(&%' � %)('�7� � (8) 

To compute each torque, the drag force ��9  for each surface can 
be obtained from (1) and the resulting torque is evaluated as :�9+; � <�;� = ��9+;��+ > � �+�+
+	 (9) 

where the vector <�;�points from the spacecraft center of mass to 
the geometric center of the >?@ drag surface and is expressed in 
the body coordinate system. Finally, the total torque due to 
atmospheric drag is  

:�9 � A:�9+;8
;B� �� (10) 

E. Gravity Gradient Torque 
Considering the spacecraft as a rigid body in space and 

evaluating how strong the gravity forces are along the body, the 
parts of the spacecraft that are closer to the Earth will experience 
stronger gravitational attraction than those that are further, 
creating a gradient of gravitational force along the body of the 
spacecraft. This gradient produces a torque about the center of 
mass that depends on its attitude.  

The gravity gradient torque is a natural free attitude 
stabilization method due to its properties at certain attitude 
configurations. The expression for the gravity gradient torque, 
is [10] 

:�CC � 
DEFGHI GJ�H = KGJ�H+ (11) 

where GJ�H is the vector that goes from the center of the Earth to 
the center of mass of the spacecraft, EF is the mass of the Earth, D is the universal gravitational constant and K � L>MN
K�+ K�+ K�� 
is the inertia matrix of the spacecraft. The expression for�GJ�H in 
the body frame, is  

GJ�H � !GH�GH�GH�" � �#$ ! ��GH"� 
(12) 

 

Based on the assumption that the body frame is aligned with the  
principal axes of inertia of the spacecraft, the gravity gradient 
torque in the body frame is 

:�CC � 
DEFGHI OGH�GH�
K� � K��GH�GH�
K� � K��GH�GH�
K� � K��P� 
(13) 

III. ATTITUDE DYNAMICS  
In this section, we will consider a 2U CubeSat that uses the 

D3 device to produce AT and GGT. Considering the features of 
the D3 device and its range of operation, a 3-2-1 Euler sequence 
is used to parameterize the attitude.    

A. Equations of Motion  
The spacecraft attitude dynamics can be represented as  KQJJ�R * QSKQJJ� � T� (14) 

where �QJJ� � UQV+ QW+ QXY5  is the angular velocity of the 
spacecraft with respect to the inertial reference frame, and T� is 
the vector containing torques commonly considered as 
disturbances, such as AT and GGT, where QS  is the skew-
symmetric matrix defined as 

QS � O � �QX QWQX � �QV�QW QV � P� (15) 

In the case of a CubeSat with an attached D3 device, the term T� � :�9+:�CC  in (14) contains the AT (:�9� and GGT 
:�CC� from 
(10) and (13) respectively.  

B. Modeling Assumptions 
The following development assumes the spacecraft is on a 

circular LEO orbit. This assumption is reasonable considering 
that a common orbit for CubeSats is that of the International 
Space Station (ISS), which is circular. The development also 
assumes that )+ &  and '  are small angles, to simplify the 
expression for the GGT and subsequent stability analysis.  

Based on the circular LEO orbit assumption, the angular 
velocity of the orbit frame with respect to the inertial frame Z�can be expressed in the orbit coordinate system as [JJ�$\] � �Z.�� (16) 

where the angular velocity is constant, and its magnitude is 

Z � ^DEFGH� � (17) 

The vector QJJ�  in (14) represents the angular velocity of the 
spacecraft’s body with respect to the inertial reference frame, 
given by QJJ� � [JJ�#\$ * [JJ�$\] (18) 

where  [JJ�#\$  is the angular velocity of the body frame with 
respect to the orbit frame. In the body coordinate system, and 
using the 3-2-1 Euler angles sequence kinematics, this vector 
can be written as  

[JJ�#\$ � ! �(& � �()%& %) �%)%& �() �" O
'R&R)R P� 

(19) 

Using the direction cosine matrix��#$ in (4) to (16), QJJ� can be 
expressed in the body coordinated system as  
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QJJ� � � O )R � (&'R * Z%&('()%&'R * %)&R * _
()(&(' * %)%'�%)%&'R � ()&R * _
%)(&(' � ()%'�P� 
(20) 

Applying the small angle assumption, (20) can be approximated 
as  

QJJ� ` O)R * Z'&R * Z'R � Z)P a QJJ�R ` O)b * Z'R&b'b � Z)R P+ 
 

(21) 

where QJJ�R  is the angular acceleration approximated with the small 
angles assumption.  

The GGT expression in (13) can be simplified using the 
circular LEO orbit and the small angle assumptions. The 
resulting GGT is expressed in the body coordinate system as  

:�CC ` 
Z� ! 
K� � K��)�
K� � K��&� "� (22) 

Substituting (21) and (22) into (14), yields the following 
system that describes the attitude dynamics [10] K�)b * �Z
c� � c� * c��'R * 	Z�
K� � K��) � :9�K�&b * 
Z�
K� � K��& � :9�K�'b * Z
K� � K� � K��)R * Z�
K� � K�� � :9��  

(23) 

C. Change of Inertia Tensor Due to Changes in the Drag 
Surfaces 
From (22) it is possible to vary the GGT by changing the 

inertia tensor K. In fact, there are configurations of the inertia 
tensor where the linearized equations of motion are stable due to 
the GGT. 

The drag surfaces available in the D3 device can be used to 
produce a GGT stable configuration of the inertia tensor. To 
compute the inertia tensor, the spacecraft is considered as an 
assembly of multiple rigid bodies with their own inertia tensors. 
The 2U body of the spacecraft is assumed to be a rectangular 
box with mass of 1.5 kg. Each drag surface is composed of two 
rigid bodies: one flat rectangular plate�(deployed portion), and 
one thick-walled cylinder (rolled portion).  

The dimensions of each rigid body change depending on the 
deployment level of the drag surface, changing the inertia tensor 
of each body. In the case of the flat panel, the length of one of 
its sides represents the drag surface’s deployed length. The thin 
cylinder changes its radius depending on the rolled portion of 
the drag surface.  

To calculate the inertia tensor for the entire spacecraft, each 
inertia tensor needs to be computed with respect to the 
spacecraft’s center of mass. For this calculation, each inertia 
matrix is required to be aligned with the CubeSat’s body axes. 
The inertia tensor of each flat plate Kde+;f  needs to be rotated using Kde+;� � � �Gde+;�Kde+;f �Gde+;5 ��+ > � �+�+
+	� (24) 

where the rotation matrix Gde+; aligns the principal axes of the >?@ flat plate with the body axes of the spacecraft. No rotation is 

required for the thin cylinders due to their geometry and how 
they are mounted on the spacecraft.  The parallel axis theorem 
to compute the inertia tensor of each body with respect to the 
spacecraft’s center of mass using  KgHhi � Kg * Kjk+ (25) 

where Kg  is the inertia tensor of the body of interest, and the 
matrix Kjk  

Kjk � l�g
mn�� * mn�� � ��g
mn�mn�� ��g
mn�mn����g
mn�mn�� �g
mn�� * mn���� ��g
mn�mn����g
mn�mn�� ��g
mn�mn�� �g
mn�� * mn�� �o+ 
(26) 

applies the parallel axis theorem to that body. In (26), �g, m�p + m�nnn 
and m�nnn  represent the mass of the body of interest, and the 
distances from the spacecraft’s center of mass to the body’s 
center of mass along mq�, mq� and mq� respectively. The location of 
the spacecraft’s center of mass is also affected by the 
deployment level of the drag surfaces. Therefore, it is important 
to determine its location prior to the computation of the inertia 
tensor and atmospheric torque.  

IV. CONTROL DESIGN 
This section presents the design of a controller to stabilize 

the CubeSat’s attitude using natural torques. The GGT and AT 
are combined such that the roll and yaw angles�are regulated to 
zero using GGT and the pitch regulation performance is 
improved using a Lyapunov-based bounded control law that 
uses the AT to regulate the modified state < � & * r&R + (27) 

where r� s �t is a constant positive gain.  

A. Gravity Gradient Stability 
The assumption of small angles is useful to study the 

stability of the system using gravity gradient torque. This 
assumption is also reasonable considering the fact that the D3 
device’s configuration passively seeks to keep the spacecraft 
ram aligned. To study the influence of GGT on the stability of 
the system in (23) we can set the AT to be zero and then apply 
the stability analysis for linear systems. From this analysis, the 
well-known gravity gradient stable configuration of the inertia 
tensor to remain stable can be obtained as [10] K� u K� u K�. (28) 

If (28) is satisfied, the body frame will tend to be aligned with 
the orbit frame due to the action of GGT. A control algorithm to 
deploy all drag surfaces considering this condition is developed 
in the next subsections.  

B. Atmospheric Torque for Attitude Regulation 
The condition in (28) requires the GGT to be the only torque 

acting on the system. Due to the coupling between roll and yaw 
and considering that the AT only has components on the mq��and mq�  axes, we set :9� � �  to stabilize the roll and yaw angles 
using only GGT and develop a Lyapunov based controller to use 
the :9�  component of the AT to improve performance in  
stabilization of the pitch dynamics. The AT depends on the 
spacecraft’s attitude, so the drag surfaces DS2 and DS4 need to 
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vary their deployment levels in time to ensure that :9� � � if the 
attitude angles are not zero. Although the pitch dynamics in (23) 
seem linear, it is important to note that the inertia tensor is not 
constant and the magnitude of the atmospheric is very limited. 
Since the goal is to develop a control law that uses the 
atmospheric torque :9�  to contribute for attitude stabilization, 
then input saturation and the variation of the inertia tensor must 
be considered in the stability analysis. In an operational case of 
a CubeSat with the D3 device, once the spacecraft is detumbled 
and the drag surfaces are initially deployed, small perturbation 
torques are induced due to small differences in the deployment 
level for each pair of opposite drag surfaces. Moreover, missions 
that involve the CubeSats with a mounted D3 device will use it 
for orbit maneuvering, requiring active variation of the total drag 
surface area. These maneuvers will also contribute to generate 
perturbation torques because each drag surface is commanded 
individually. Undesired torques generate orientation and angular 
velocity errors that need to be compensated and ensuring 
stability by GGT may not be enough in cases where considerable 
angular velocities are induced.  

Based on the pitch dynamics in (23) and on the subsequent 
stability analysis, we design the torque control input on the 
second body axis mq� as follows 

:9� � v�w xMyz < * v
_�
K� � K��K� � �r�{& � �r &R{ K� (29) 

Where <  is defined in (27) and w s �t�is a constant positive 
gain. 

Theorem 1: Given the pitch dynamics in (23) and its 
corresponding assumptions, the controller in (29) yields global 
asymptotic pitch regulation in the sense that  |0}?~��&�� + �&R � �~ �� (30) 

Proof: To prove theorem 1, we first define the positive 
definite candidate Lyapunov function  

�
�� � �� &� * �� <�+ (31) 

The time derivative of (31) is  

�R � �r 
&< � &�� * <6&R * r&b7� (32) 

Substituting the pitch dynamics in (23) for &b , substituting (29) 
for :9��and cancelling common terms yields 

�R � � �r &� � wr�< ��1� <+ (33) 

which can be upper bounded as [11] 

�R � � �r &� � wr ��1�� <� (34) 

Since �R  is negative definite, then &+ &R �� s � �� . Moreover, 
since�Z+ c�+ K�,K� s ��� by assumption, then the controller in (29) 
is also bounded. From (32), &+ ��1� < �� s � ���then by Barbalat’s 
lemma  |0}?~��&�+ ���1� <� �~ �+ (35) 

then �<� ~ ��and �&R � ~ �. 

C. Integration of GGT and AT for Attitude Regulation 
The inertia tensor K  and the AT are functions of the drag 

surfaces’ deployment levels. To integrate the controller 
presented in (29) with the GGT stability condition of (28), 
additional efforts are required. The control algorithm is required 
to provide the spacecraft with the deployment level for each drag 
surface at each time step. Our proposed approach consists in 
ensuring the GGT stability condition and then finding a good 
approximation to the AT required by the control law (29). The 
formulation of a minimization problem can be written as  

}01� �:�9 � :�9+9��� �(� x
���
���
� � �; � 
����+ > � �+�+
+	K�K� � � � �K�K� � � � �  

 

(36) 

where � � 2��+ ��+ ��+ �845  is the vector containing the 
deployment level of each drag surface, and :�9+9�� � s �t� is the 
desired AT which includes the controller in (29). This 
minimization problem with nonlinear constraints is solved using 
the ‘fmincon’ function in MATLAB. However, it is not 
guaranteed that a global minimum is achieved at each time step.  

V. SIMULATION RESULTS 
Numerical simulations were performed to test the 

controller’s performance. Integration of the nonlinear attitude 
equations of motion was performed using the MATLAB’s 
variable step ODE45 algorithm. The spacecraft is simulated in 
equatorial circular orbit with altitude 

��� , ��  perturbation 
and variable atmospheric density obtained from the Harris-
Priester model [12]. Note that the control inputs obtained from 
Eq. (36) are computed every minute using a constant estimate of 
the atmospheric density � � ���� = �������N\��. 

TABLE I     INITIAL CONDITIONS �� �� �� �R � �R � �R � � L�N �� L�N �� L�N ����
�L�N\( �����L�N\( ���� L�N\( 

A. Open Loop Simulations  
These simulations evaluate the system’s performance in 

open loop operation considering two different cases and the 
initial conditions presented in Table 1. The first case considers 
that all drag surfaces are equally deployed 
� during the entire 
maneuver, while in the second case the drag surfaces are 
deployed in such a way that the stability condition (28) is 
satisfied by making  �� � �� � 
� and �� � �8 � ����.  

Fig. 2 presents the resulting attitude angles for both cases. In 
the first case (left) the CubeSat remains ram aligned with 
bounded oscillations in pitch and yaw angles. Nevertheless, the 
roll angle increases indefinitely meaning that the spacecraft is 
spinning over the mq� axis. On the other hand, the simulation for 
the second case shows that all three angles remain bounded 
when the condition (28) is met, but they do not converge to zero 
due to the action of the attitude dependent AT. Results for the 
second simulation are also shown in Fig. 2 (right). 
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Fig. 2 Results for open loop simulations 

B. Closed Loop Simulations 
In the closed loop simulations two cases are also considered. 

First, the GGT stability is ensured by solving (36), and the 
desired AT  is set to :�9+9�� � 2�+�+�45  to compensate for the 
variation in AT due to the spacecraft’s attitude. For the second 
simulation case, the Lyapunov-based controller from (29) is 
included in the second component of the :�9+9�� vector to solve 
(36). The closed loop simulations have the same initial 
conditions shown in Table 1 except for the initial pitch &� ���L�N  and pitch rate &�R � �����L�N\( which are modified to 
validate the performance improvement provided by the 
controller (29). The resulting attitude angles for the first and 
second simulation are shown in Fig. 3 as dashed and solid lines 
respectively. 

 
Fig. 3 Attitude angles for closed loop simulations

 

 
Fig. 4 Control commands using Lyapunov controller

 

Although both algorithms asymptotically stabilize the 
spacecraft’s attitude, the angle profiles obtained without 
including the Lyapunov-based controller are not physically 
feasible for the D3 device. By including the controller (29), the 
CubeSat is successfully stabilized without unfeasible 
orientations for the D3. The control commands for the 
simulation implementing (29) and (36) are shown in Fig. 4. 

VI. CONCLUSION 
A novel control algorithm to stabilize the attitude of a 2U 

CubeSat using the D3 device is developed. The controller 
exploits the gravity gradient and atmospheric torques to keep the 
spacecraft’s body aligned with the orbit frame by changing the 
level of deployment of four drag surfaces. Improved 
performance has been achieved compared with using only GGT 
by including a Lyapunov-based bounded controller for the pitch 
angle regulation. Simulations have shown that the controller is 
robust to small uncertainty in the atmospheric density. 
Additional preliminary simulations were performed and have 
shown sensitivity to the location of the center of mass. 
Therefore, improvements to overcome reasonable levels of 
uncertainty in this parameter are required. Future efforts will 
consider estimation of time-varying atmospheric density and the 
integration of attitude stabilization with missions where drag-
based orbital maneuvering is also required. 
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