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The attitude control of a spacecraft is integral to achieving mission success. However, failures
in actuators such as reaction wheels are detrimental and can often lead to an early end of
mission. We propose a Lyapunov-based adaptive controller that can estimate and compensate
for reaction wheels degradation simultaneously. The controller incorporates an adaptive update
control law with a gradient-based term and an integral concurrent learning term that collects
input-output data for online estimation of uncertain parameters. The proposed controller
guarantees attitude tracking and minimal loss of control authority under faulty reaction wheel
performance. The controllers performance is tested through a variety of numerical simulations
as well as a Software-In-Loop test, where the adaptive controller is run in Python via ROS2

whilst the environment is simulated in Simulink.
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I. Introduction

The spacecraft’s ability to accurately modify its attitude is one of the most critical features that must be guaranteed in
any space mission. Reaction Wheels (RW) are the most commonly used actuators for this purpose due to their relatively
small size and torque accuracy. However, their moving parts and the harsh conditions in space make these actuators
prone to failure. The Attitude Control System (ACS) of a spacecraft is a highly critical system, hence the failure of this
system often means the end of the mission. Redundant Reaction Wheel Arrays (RWA) with more than three RWs are
often used to maintain control authority for three-axis attitude control, and for momentum management using the RWA
null space [[1].

Designing controllers for attitude control requires that they be resilient to disturbances and uncertainties. Current
methods of control to address these issues include, sliding mode control [2]], adaptive control [3], observers [4]] and
neural networks [5]]. Often due to the lack of accuracy and difficulty in proving stability, neural networks are rejected as
viable solutions, whilst observers are used at the cost of more computational burden. Hence, of particular importance is
the development of sliding mode control, which is a powerful yet simple controller that unfortunately can often suffer
from chattering. The work in [6] develops an adaptive, fault tolerant sliding mode that does not generate chattering
through an adaptive control protocol. Adaptive controllers are also a prominent solution because of their innate ability
to handle uncertainties in the nonlinear dynamics. [6H8]]

Fault-tolerant controllers have been developed to compensate for the reduction in performance of the ACS actuators.
In [9]], a backstepping sliding mode controller was designed to maneuver the spacecraft’s attitude despite faulty actuators,
which were a combination of RWs and thrusters. [10] develops a sliding mode combined with disturbance observer fault
tolerant controller that can quickly and efficiently handle actuator saturation and misalignment. Sensor failures were also
detected and isolated using Unscented Kalman filters (UKF). Authors in [11] designed a RW failure detection strategy
that employs a pair of long short-term memory (LSTM) neural networks, one to approximate the RW dynamics and the
other to train an adaptive threshold detector based on the difference between RW measurements and the first network.

A fault diagnosis strategy was designed in [12] using a particle filter to predict the non-measurable bearing
temperature lubricant in a RW, which has been identified as one of the main indicators for potential failures in this type
of actuator. A similar approach was proposed in [13]] to predict the remaining useful life of RWs by using an adaptive
extended Kalman filter. In [14] a Lyapunov-based terminal sliding-mode observer was proposed to reconstruct RW
faults and disturbances, and a compensation control law was designed to account for them.

Adaptive control strategies are often used to compensate for parametric uncertainties in the system model by
proposing gradient-based adaptation laws that compute estimates of the uncertain parameters online [[15]. These
adaptation laws are often sufficient to prove convergence of the error states. However, convergence of the model
parameters to their real values can only be guaranteed under the assumption of Persistent Excitation (PE), i.e., the

system is persistently excited over an infinite time integral, which is difficult to guarantee and verify in practice [16}[17].



An adaptation strategy, called Concurrent Learning (CL), was proposed to relax the PE condition by introducing in the
adaptation law a term that collects input and output data under the assumption of measurable higher order states [18]].
The CL adaptation strategy guarantees exponential convergence of the system parameter estimates after a verifiable
Finite Excitation (FE) condition is satisfied, which can be evaluated online, and concurrent to the control execution, by
computing the eigenvalue of a matrix built with collected input-output data. Recent efforts have relaxed the assumption
of measurable higher order states by using their integrals in the so-called Integral Concurrent Learning (ICL) [19],
which has been used in a wide range of control applications [20422].

Compensation for actuator fault detection and detection or monitoring of actuator degradation are often considered
as separate blocks in the spacecraft ACS, in the control and estimation blocks, respectively. This paper introduces a
Lyapunov-based adaptive controller that performs both compensation and fault detection simultaneously, and achieves
global exponential attitude tracking in the presence of RW failure or degradation. An actuator health matrix is included
in the satellite attitude dynamics and considered uncertain. An ICL-based adaptive update law is designed to achieve
convergence of the RW health parameters once the FE condition is satisfied. The controller is validated in simulation
with different numbers of RWs along with varying types of degradation levels.

The paper is organized as follows: A first section presents the satellite attitude dynamic model, the next two sections
describe the controller design and corresponding stability analysis. Finally, sections with performed numerical and SIL

simulations, and conclusions are presented.

I1. Spacecraft Attitude Dynamics
Three reference frames and their corresponding coordinate systems will be considered throughout this paper, and
are depicted in Fig. [I] The Body reference frame 8, attached to the spacecraft body is defined with origin at its center
of mass, and the unit vectors by, by and b3 € R3 along its longitudinal, lateral and vertical axes, respectively. The
coordinate system associated with the orbital reference frame O has origin at the spacecraft center of mass, and is defined
by the unit vectors 61,0, and 63 € R3, with 63 aligned with the zenith direction, 6 the orbital angular momentum
vector, and 61 aligned with the (6, X 03) direction. The Earth-Centered-Inertial (ECI) coordinate system, centered at

the Earth’s center of mass and with basis {X, j, £}, is associated with the Inertial reference frame N.
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A. Equation of Motion

The attitude motion of a spacecraft with N € Z reaction wheels is governed by the following equations of motion:

Jé = -0 x (Jo + JrwGQ) + Gdu )

1
v=1|(1-0"0) 420" + 2007 |0, @)
where w € R is the spacecraft angular velocity expressed in the body coordinate system, o € R? is the vector of
Modified Rodrigues Parameters (MRP) that represent the orientation of the spacecraft with respect to the inertial
frame [23], Q@ = [Q},Q),---,Qn]T € RV is a vector containing the N RW angular velocities, u = —Jrw€ =

R3*3 is the total inertia

[ur,uz,--- ,un]?T € RY is the control input that represents the torque applied by each RW, J €
matrix, Jrw € R is the inertia of the flywheels about their spin axis, ® = diag{¢,, ¢2, -+, ¢N} € RNXN js the
uncertain RW health matrix, G = {8, 82, SN} € RN s the RWA configuration matrix, and §; € R3 is the direction

of the i’ RW’s spin axis expressed in the body coordinate system. The matrix I, € R"™*™ represents an identity matrix

of dimension m X m, and the skew-symmetric matrix a* € R3*3 for a vector a = [ai, an, a3]T € R3 is defined as

0 —as an
aX = as O —-ap| - (3)
—da) aj 0

I1I. Control Design

A. Control Objective
The objective is to design an adaptive controller that achieves attitude tracking despite failures in one or more
redundant reaction wheels. Besides compensating for these failures, the controller must also provide an online estimate

of the health matrix ® for actuators performance assessment.

Assumption 1. Changes or degradation in performance of RWs are slow enough, as compared to attitude maneuver
times, for the ® matrix to be considered constant.

The spacecraft attitude dynamics in Eq. (I)) can be rewritten as

o=J"(~ox(Jw+JrwGR) +Y0), 4)

where the term Y = G®u € R? is a linear parameterization with respect to the uncertain diagonal entries of the health

matrix ®. ¥ € R>¥ is a measurable regression matrix defined as



Y =G (diag{ui,uz, -+ ,un}), ®)

and the vector of uncertain parameters § € RV as

0=1[¢1, ¢2, -+, on1" (6)

Assumption 2. The spacecraft is equipped with an attitude determination system capable of providing the controller
with angular velocity w and attitude o measurements.

Let us introduce the error MRP o, € R, representing the attitude mismatch between the body and desired frames,
which can be computed using the spacecraft attitude o~ and desired, bounded attitude trajectories 0, wg € R?, and

obeys the following kinematic equation [23|:

0. = —B&, @)

where the matrix B € R3*3 is defined as

B= (1 —o-eTO'e)I3+2a'eX +20,07, )
& =w - Rwy € R is the relative angular velocity and R € R**3, defined as

o Slo) 40—l o
(1+oloe)

represents the rotation matrix between the body and desired frames.

The attitude control objective can be established as

R— I, as t— oo, (10)

which will be achieved if

[0ell = 0, and [|@] =0 = [|de|l — 0. (11

B. Control Development

Let us define a modified state vector r € R3 as

r =0+ a0, (12)



where a € R¥3 is a symmetric, positive definite control gain matrix. Taking the time derivative of Eq. (12) yields

1. 1 .
;= ZBa")+ZB(a')—Ra')d —Rwd) +ady,, (13)

with B = [-207 6.5 + 267 + 4 (6007 )].

Using the dynamics in Eq. @), and the fact that R = —@*R, we obtain

1.1 LN _
i = B0+ B (J—l (—a) X (Jo + JrwGQ) + Y0 +Y0) — Rovg +(I)XRa)d) +ad,, (14)

where the estimation error is defined as @ = @ —§ € RN , and therefore the fact that Y@ = YO +Y 9 was used.
Since the control input u, i,e., RW torques, is embedded in the Y@ term, let the auxiliary control signal u4 € R3 be

designed as

. . 1.
ug=wx (Jo+JgwGR) + JROg — J&*Rwg + 4JB™! [—ZBLD — a0, — Kr —ﬂo-e] , (15)

where 8 € R, is a constant control gain.
Based on Eqs. (I4) and (I5), the adaptation law is designed as
NS
A 1 or (=T L T 7]
6 = proj{ 2 TY (J ) B'r+TKi Y Y, (Jw(t) —Jo(t - At + U; — yia) , (16)
i=1
where T, K;, € RV*N are constant, positive definite adaptation gain matrices, d € RN is the estimate of 0, At € Ry is
the time between samples, proj{-} represents a projection algorithm to keep  within known, user-defined bounds [24],

N € Z is the number of input-output data pairs used for online parameter estimation, and the terms U; € R3 and

Y € R¥*N are defined as

t;

Ui (A, t;) = / (w(7) X (Jo(T) + JRwGQ(7))) dT, a7

i —At
t;
Yi(At, t;) =/ Y(r)dr. (18)

i—At

Based on the definition of Y@, the term Y@ can be written as Y = G®u, where @ is the estimate of ®. Note that

the actual control input is #. Then, we can set

Y0 = ug, (19)

and recover u as



u= (GCTD)Jr ug, (20)

where ® can be obtained by numerically integrating Eq. , and (-)" is the Moore-Penrose pseudo-inverse of (-).

In solving Eq. (20) for a system which has degraded RW performance, it is ideal for the controller to not only
identify which RW(s) are experiencing performance loss, but to then reallocate the required control torques to the
remaining operational RWs so that the full control authority of the vehicle is maintained. Since the system of equations
in Eq. (20) is underdetermined, using the Moore-Penrose pseudo-inverse ensures finding the solution that minimizes
the 2-norm of u, allocating less torque on the degraded RW(s) to keep the 2-norm low [25, 26]. The proof for the

minimization of the 2-norm of the matrix as a result of using the Moore-Penrose pseudo-inverse is given in [25].

Assumption 3. The system is sufficiently excited over a finite duration of time. Then, there exists a finite time 7 € R

such that

NS
Amin {Z yfs/i} > 1, 1)

where A,,,;,{-} denotes the minimum eigenvalue of the finite excitation condition matrix {-}, and A € R.¢ is a user-defined
threshold.

With the fact that the control allocation is calculated to reduce the overall power consumption and the health matrix
is sufficiently learned once the FE condition is satisfied, it is clear that the allocation of the torques to the RW’s via
Eq. (20) leads to a diminishing loss of control authority as compared to a scenario without the learning aspect of this

controller.

IV. Stability Analysis
For the subsequent stability analysis, let us define the composite state vector 5 = [rT, of, 717 € R*N, and
divide it into two theorems: the first theorem considers the stability of the closed-loop system before the finite excitation
condition in Assumption 3 is satisfied, i.e., t < T; and the second theorem presents the stability of the closed-loop

system after t=T.

Theorem 1. Given the spacecraft attitude dynamics in Egs. and (2), along with the adaptive update law in Eq.
, the controller proposed in Eq. ensures that the estimation error @ remains bounded and asymptotic attitude

tracking is achieved so that conditions in Eqs. (I0) and (IT) are satisfied.

Proof. LetV :R%N — R_( be a Lyapunov candidate function defined as



1 B | RO
V() = err + EO'eTO'e + EHTF ] (22)

Taking the time derivative of Eq. (22)), substituting Eqs. (12), and (19), we get

. 1 ~ ~ A
Vig)=r" (ZBJ-lye - Kr) -Bolac, -6'17'4. (23)

The expression in Eq. (I6) can be represented in the non-implementable -but useful for the stability analysis- form

N,

~ 1 T - 5

0 = proj {ZFYT (r‘) BTr+TK; ) y,.Tyie} , (24)
i=1

which can be plugged in Eq. (23)) to obtain

NS
V() = -r'Kr - polao, - 67K, nyyié. (25)

i=1

Under Assumption 3, and before t = T, Eq. can be upper bounded as

V() < ~Amin AK}IPI? = BAmin {a} lloe|l* . (26)

From Eq. , V € L. Then, neLsandr,o, € L. Since 0, r € L, then &, € L, which along with Egs.
and , and the fact that wg, @q, R € Lo by definition, leads to @ € Lo, = ug € Lo. Since ug € Lo, and 0e L,
due to the projection algorithm, then Y € L., which implies that Q,u € Lo, and therefore F € L from Eq. (I4).
Since &, 7 € L and r, 0, € L5, then by Barbalat’s lemma [[15], we can conclude that attitude tracking is achieved.

The subsequent theorem, assumes that the finite excitation condition in Eq. @ is satisfied, which will allow online
estimation of the RW health matrix @. The purpose of estimating @ is to obtain information about the RWs performance.
For Instance, in the case of total failure on the i’ RW the spacecraft will not experience torques coming from that RW.
This will force the estimation of ®’s i** diagonal entry to approach zero provided guaranteed convergence of @, so that
no torques from this RW influence the attitude dynamics.

For the subsequent part of the stability analysis let us define x, kK € R, as known constants used to bound the

Lyapunov function, and { = min (/lm,-n {K?}, BAmin {@}, Anin {Kl Zf\fl %T%}) € R.p.

Theorem 2. For the spacecraft attitude dynamics described in Egs. (I)) and (2)), the controller in Eq. and the
adaptation law in Eq. (I6) achieve global exponential attitude tracking and convergence of the parameter estimation in

the sense that



K T
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K

Proof. The bounds for the Lyapunov function in Eq. (22)) can be expressed as

kllnl* < vy < &linl?, (28)

Since the matrix Zf\fl yfyi is positive definite after r = T, i.e., the finite excitation condition is satisfied, then the upper

bound for V can be rewritten as

NS

V() < ~Amin AKHIIP = BAomin {0} 101 = A {Kl > yfy,-} [cl (29)

i=1

or in a more compact form

V) < = lnl*. (30)

Applying the comparison lemma [I5] and using the bounds in Eq. (28) yields

V ((t)) < V(y(T))exp (—g (t - T)) Vi>T. 31)

Note that in this portion of the analysis, the dependence of time of the state 77(¢) is made explicit. Using the bounds in

Eq. to express Eq. in terms of ||p(#)|| and ||5(T)|| we get

I < [~ [l7(T) ]| exp (—%(I—T)) VixT. (32

Note also that from Eq. we know that ||p(T)|| < ||7(0)||. Using this fact and the bounds in Eq. yields

Il < = IOl exp (—%(r—n) Viz0, (33)

which can finally be rewritten as shown in Eq. (27).

V. Simulation
To validate the controller’s capability of estimating the uncertain health parameters of the RWs, we devise 5 separate
scenarios. In all simulation scenarios, the same attitude reference commands are used. In each of the first 4 scenarios,
the attitude reference is initially set to align the body and ECI frames to then alternate between the initial configuration

and Nadir pointing three times before settling with Nadir pointing. The change of attitude reference occurs every 12

10



minutes with the final Nadir pointing being set after 2000 seconds of simulation. The final scenario is a long time frame
test aiming to evaluate the controller’s performance under slow time-varying degradation. For this scenario, the attitude
reference is continuously switched every 12 minutes for the entire duration of the simulation. The first two scenarios,
both with 4 RWs, aim to demonstrate the health estimation capability by running the same scenario with and without the
ICL term enabled.

The next pair of scenarios illustrate the capability of the controller to identify the degradation level of a certain
pair of RWs. Both simulations contain six RWs with two failing to different levels. In the first scenario, the two RWs
are degraded to 0% performance, i.e., complete failure, whilst in the second, RW 1 is degraded to 0% performance

and RW 2 is degraded to 30% performance. The gains used for all scenarios are listed in Table[I]and other simulation

parameters are listed in Table 2]

Table 1 Table of gains for the adaptive controller for all 4 Cases.

Gain Case 1 Case 2 Case 3 Case 4
K, 10 Iy 0 10 I, 10 I
K 5107 3 51071 I3 51072 I3 51072 I
@ 3x1072 I3 3x1072 13 3x1072 I3 3x1072 I
B 5% 1073 5% 1073 5% 1073 5x 1073
r 100 I4 100 I, 300 I 300 Is
1 1x1077 N/A 8x 1077 8x 107
® | diag{1,1,0,1} | diag{1,1,0,1} | diag{0,0,1,1,1,1} | diag{0,0.3,1,1,1, 1}

Table 2 Table of configuration parameters for the RWs for each simulation.

Parameter Value Units
Satellite Mass 25 kg
J diag{0.4333,0.7042,0.7042} kg m?
IC (a,e,i,w,Q,0) [6878 0 0.8901 05236 0.3491 0.7854 (km, N/A,rad)
IC (g, wp) ([t 0 o of.Jooo17 00087 00017} | (N/A.rads7)
0.5774 —0.5774 0.5774 —0.5774
G (4 RWs) 0.5774 0.5774 -0.5774 -0.5774 N/A
0.5774 0.5774  0.5774  0.5774
05 05 0.5 0.5 0.5 0.5
G (6 RWs) 0 075 075 0 -0.75 -0.75 N/A
0.866 0.433 -0.433 -0.866 -0.433 0.433
Jrw 5.7296 x 10° kg m?
Max RW Torque 20x 1073 Nm
Max Q (for all RWs) 1.0472 x 10° rads™!
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The final scenario is designed to test a limitation of the proposed controller, the assumption of constant health
parameters. Set up similar to the first scenario, where RW 3 experiences performance degradation, it is run however for
a total of 100,000 seconds. Unlike scenario 1, the degradation of RW 3 follows a logarithmic-like decay from ~ 60% to
~ 50% for the first 65,000 seconds to mimic realistic RW performance decay [27H29]]. After that point, it experiences
an abrupt loss in performance to 20%. Concurrently, we truncate the learning of the controller once FE condition is met
by setting the upper limit in the summation, Ny in Eq. (I6) to be the number of samples required to reach the verifiable
FE condition. This allowed using only the necessary samples to make the estimation to reduce susceptibility to the
time-varying health matrix ®. Lastly, to further improve the estimation given the challenging scenario, the ICL term and
estimates were reset every 10,000 seconds, to allow for the controller to learn from the most recent batch of data. The
RW health decay is in clear violation of Assumption 1. However, the decay occurs slowly enough so that the controller

is still able to provide a reasonable estimate of the health after each reset.

A. Cases 1 & 2: ICL term influence

The ICL term is responsible for the input-output data collection and helps achieving convergence of the uncertain
parameters’ estimation error. Hence, the following two simulations illustrate the importance of this term in the
controller’s ability to estimate the health of the system’s actuators; in this case, the health of all the RWs.

For both simulations, the time history plots for the error MRP, body angular velocity and RW angular velocity, are
presented in Figs. [2a] & [4a], [2b] & [Ab] and [2¢] & [Ac| for Cases 1 & 2, respectively, to verify that the controller is accurately
tracking the attitude command. The failing RW can be observed in the plot of the RWs angular velocities presented in
Figs. 2c &

For Case 1, when the ICL term is active, we include Fig. [3a] a plot of A, which is the minimum eigenvalue of the
finite excitation condition matrix explained in Assumption 3. Because there is an user-defined threshold A, which can be
verified during execution, when this threshold is met it means that the system is sufficiently excited and exponential
convergence of the estimation error can be guaranteed. The estimation of the uncertain parameters is presented in Figs.
[3b] & [Ad] for both simulations. Because the ICL term is deactivated in Case 2, no plot of A is necessary.

With Assumption 3 we can say that there is a time at which the FE condition is satisfied and thus the controlled has
learned and can effectively allocate the correct torques to the system as desired by the controller. This is evident in Fig.
[5| which display the control allocation in the the body frame with and without the ICL term. Only with the ICL term, do

the allocated torques closely match the desired torques.

12
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B. Cases 3 & 4: More RWs and partial degradation

As mentioned, Cases 3 & 4 are designed to test the capability of the proposed adaptive controller to perform in
multiple scenarios and still deliver the expected results. Since Cases 1 & 2 were designed around a system with 4 RWs,
these next two simulations contain a system with 6 RWs. The 6 RWs are arranged in a vertical, symmetric, hexagon such
that there are multiple redundancies built into the system. Along with the increased number of RWs, the system in both
simulations will experience the failure of two RWs, to test the ability of the controller to handle multiple failures. In
Case 3, RWs 1 and 2 are set to experience total failure, whilst in Case 4 the same RWs are set to experience degraded
performance, only able to output 0 and 30% of their nominal torque preformance, respectively. Like Cases 1 & 2, for
both scenarios we display the time history of their error MRP in Figs. [6a & [8a] the body angular velocity in Figs. [6b] &
[BbJand the RW angular velocities in Figs. [6c| & [Bc] These present the overall performance of the controller and ensure
that it behaves as expected.

As both simulations have the ICL term active, Figs. [7a] & Pa]display the value of 1 over time, whilst Figs. [7b] & [0b]

show the values of the estimated uncertain RW health parameters.
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C. Case 5: time-varying health degradation and ICL term reset

Due to the long time scale nature alternation between attitude commands, we present the results of this simulation
slightly differently to the previous simulations for clarity and to also emphasize the key aspects we aim to test in this
simulation. Like case 1, RW 3 experiences the performance loss and begins with a slow, gradual decay before abruptly
losing a majority of its performance. The loss is modeled with the following piecewise function:

~ IS + 1.6 0 <1 < 65000

Orw4 =

0.2 t > 65000
Figure [I0] presents the estimated health of all the reaction wheels along with the true performance profile of RW 3.
The red dashed lines represent the times when the FE condition is satisfied and A has converged. When this condition
is met, no more data will be added to the second term in Eq. (I6) and the learning is truncated. The parameters of
the controller responsible for learning are also reset every 10,000 seconds, as shown by the jump in all RW estimated

parameters to 100%.
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Fig. 10 Simulation of a realistic log-like health degradation of RW3, with sudden performance loss at 65,000
seconds.

D. Software-In-the-Loop (SIL)

To validate that the controller can be deployed and performs reliably on real hardware, we conducted a Software-in-
the-Loop (SIL) simulation using an NVIDIA Jetson Nano as a target hardware platform. The objective is to assess
the controller’s accuracy, real-time performance, and resource utilization when it is deployed on a realistic onboard
hardware.

The SIL simulation architecture includes two main components. First, the satellite simulator, developed with

MATLAB/Simulink, models the spacecraft dynamics and provides satellite state data. Second, the adaptive control
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algorithm, implemented in Python, runs on the separate onboard computer and is the main focus of SIL testing.
To facilitate communication in the SIL setup, the Robot Operating System 2 (ROS2) framework was chosen as the
communication interface due to its robust communication model that ensures efficient data transfer over a shared
network [30]. Additionally, ROS2 offers scalability, making it easy to add or remove components while maintaining the
overall architecture. The SIL setup is available at the Space Vehicle and Robotics laboratory at the Florida Institute of
Technology.

In the setup configuration shown in Fig. [TT] we employ a publisher-subscriber communication model. The satellite
simulator and the control algorithm act as ROS2 nodes that function as publishers and subscribers, creating a closed-loop
system. ROS2 handles the data exchange between the satellite simulator and the control algorithm through predefined
topics:

» SatState: Contains the satellite’s position, velocity, quaternion, angular velocity, and reaction wheel angular

velocity.

» DesState: Contains desired quaternions, angular velocity, and acceleration.

» SatConfig: Provides configuration settings, including the satellite’s moment of inertia, flywheel moment of

inertia, and reaction wheel configurations.

e AdptCtrlOut: Contains computed torques, the estimated RW health parameters, and the ICL term from the

adaptive algorithm to the satellite simulator.

(" Satellite Simulator (Matlab/Simulink) h [ On-board Computer Jetson Nano h
(Python)
| Satellite EoM | | Environments |
| Sensors Model | | Attitude Determination I
Adaptive Controller
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I SatConfig 1
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1 AdptCtrlOut |« X
I 1

Fig. 11 Software-in-the-loop (SIL) simulation architecture. The adaptive controller block was disabled on the
satellite simulator (shown in gray), and moved to the Jetson Nano. Both systems now interact through ROS2
framework to form a closed-loop control setup.

The flow of the SIL simulation is as follows. First, the satellite simulator generates the current state of the simulated

satellite based on initial conditions or previous state data. This state data is published to the relevant ROS2 topics
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(SatState, DesState, and SatConfig). Next, the controller algorithm, running on the Jetson Nano as another ROS2
node, subscribes to these topics, and processes the incoming data to compute the necessary control torques, the estimated
RW health parameters, and the A term. The computed controller outputs are published to the AdptCtrlOut topic. The
satellite simulator, which subscribes to the AdptCtrlOut topic, receives the control inputs, which are then applied to
update the state of the satellite in the next simulation cycle. This closed-loop process repeats with continuous interaction
between the simulation and the control algorithms.

Test Case 5 was used as the representative test scenario for the SIL test and was conducted in real time for
approximately 27.8 hours (100,000 seconds). The controller code was implemented in Python by translating the original
MATLAB/Simulink code. The controller runs concurrently with the satellite simulator at a rate of 10 Hz. Euler
integration method was used to update the estimate 6. During the SIL test, three performance metrics, including
execution time (milliseconds), CPU load (%), and memory usage (%), were recorded. The execution time was measured

for every control loop step while CPU load (%), and memory usage were logged with a separate script running at 1 Hz.

E. Results

The simulations performed in Cases 1 & 2 illustrate the importance of the ICL term. Looking at Figs. [3b|and [d)it
can be observed that when the ICL term is activated, the controller is able to effectively estimate the correct health value
for all RWs, specifically the fact that RW 3 loses all of its effective performance. In the simulataion with no ICL term,
the estimated RW health parameters in 6 do not converge to their real values. This is expected because the stability
result from theorem 1 does not ensure convergence of the estimation error 8. The periods of increased growth in A at
720, 1440, 2000 seconds are indicative of the system being excited due to the change in pointing reference. During
these periods where the RWs are being more active to alter the pointing of the satellite, the system is able to gather
input-output data through the ICL term until the threshold is reached and accurate estimation is guaranteed thereafter.
This is evident in Fig. [3b]as the exponential decay to 0% health occurs when the threshold is reached, as expected from
theorem 2.

In both scenarios, it is important to note that the controller was still able to achieve accurate tracking of the attitude
guidance. However, without the ICL term, the controller was unable to learn the uncertain parameters of the system. In
both scenarios, the remaining RWs did not saturate with the failure of the third RW.

Cases 3 & 4 investigate the capabilities of the controller to handle a more complex system with an increased number
of RWs as well as multiple failures at different levels. In Case 3, both RWs 1 and 2 were set to completely fail and this
was correctly detected by the adaptive controller as seen in Fig. Once the threshold was crossed, and the system was
sufficiently excited, the estimation of the health of the RWs was correctly estimated. Likewise, in Case 4, where the RWs
1 and 2 were set to be degraded to 0 and 30% performance, respectively, the controller was able to accurately determine

the health and estimate these uncertainties. An important note for both Case 3 & 4, is that although two of the six RWs
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failed, the other four RWs did not saturate, a critical factor in satellite attitude control, showing that no excessive control
effort was added once the FE condition was satisfied.

As in Cases 1 & 2, both simulations were able to accurately track the attitude guidance, showing that despite
multiple failures, the system was still able to perform its control task and provide correct estimations. However, one of
the key issues in the simulation scenarios, primarily evident in Case 1, was where the estimation of the health of the
non-degraded RWs is not as accurate as the degraded RW. This could be explained by a number of reasons, primarily
because the Simulink simulations include external disturbances and nonlinearities not accounted for in the design of the
controller. A refinement of the design along with further tuning of the key parameters outlined in Table[I]could also
improve the performance of the estimation.

An interesting observation of the performance of the adaptive controller can be noted when running the same
simulation, with and without the ICL term. Figs. [[2aland[I2b|show the torque allocated by the adaptive controller to
both RW 1 and 2 in each scenario with 6 total RWs. In both simulations, all parameters, but the ICL term, were kept
equal, whilst RW 1 and 2 were degraded to 0% performance. The key difference between these simulations is that in
Fig. the ICL term is not active, whereas in Fig. the ICL term is active. We can clearly see that when the ICL
term is active, and the learning threshold is reached (~ 1500sec), the controller has correctly estimated that RW 1 and 2
are completely degraded, hence does not allocate any control torque to them. Figure shows the contrary, where
the even though the RW’s are degraded, the adaptive controller does not learn the estimated health parameters and

continues trying to allocate control torques to these reaction wheels.
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Fig. 12 Comparison of allocated torques on the degraded RW’s when the ICL term is active or not.

Case 5 provides insight into the performance of the controller in long-term deployment scenarios as well as how
it reacts to realistic performance degradation profiles. As noted prior, the resetting of the learning parameters of the

controller every 10,000 seconds allows the controller to only use the most recent data collected in order to learn the
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estimated health of the RWs. Figure [T0[highlights that once converged, each time after the reset the estimated health of
RW 3 closely follows the true degradation level, whilst the remaining fully operational RWs remain close to 100%. It is
also clear that once the performance experiences the instantaneous drop to 20% and remains constant thereafter, the
estimation of all RW healths significantly improves, demonstrating the importance of Assumption 1 in the development
of the controller. We note that although the purpose of this case was to determine the capability of the estimation to
handle tougher profiles, the attitude tracking was verified to be achieved after each change it reference.

Whilst for a relatively slow degradation profile the controller is still able to closely follow the profile, this is aided by
regular resetting of the learning terms. It is evident that by resetting the learning parameters shortly after convergence
of the A term is achieved, a more accurate estimation can be achieved, as only the nearest data is utilized. Likewise,
truncating the learning once the convergence is achieved, evidenced by the constant prediction values in Fig. [T0] reduces
the impact of the time varying 6 and improves performance. It is worth noting that the other RWs are also closely
estimated during this more complex simulation and the ICL resetting had no noticeable influence on the attitude tracking

performance of the controller.
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Fig. 13 SIL test of the same simulation as Case 5.

Of particular note is the reset and learning during and immediately after the degradation to 20%, around 65,000
seconds. Due to the truncated learning once the ICL term has converged, and the fact that this occurs slightly before the
sudden loss of performance, it is clear that the controller has no indication of this performance loss until the next reset.
Once the reset is completed and new data is used to converge the ICL term again, only then is the change in performance
accounted for. It is also noted that the further from the true performance the estimates are, the faster the convergence of
the ICL term, as with the 3 resets post the sudden drop in performance. This highlights the limitations of the controller
and the balance that must be struck between resetting the estimate and allowing the controller to converge and give the

true estimates.
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Table 3 Performance Metrics of the Controller.

Metric Execution Time (ms) | CPU Load (%) | Memory Usage (%)

Average 5.94 11.93 52.03
Maximum 16.20 38.40 54.10

Std Dev 0.76 1.38 0.13

Table [3] summarizes key performance metrics obtained from the SIL test. It shows that the controller performs
reliably under the hardware constraints of the NVIDIA Jetson Nano. The controller executes each loop on an average
time of 5.94 ms, with a standard deviation of 0.76 ms and maximum spikes reaching 16.20 ms. The execution time is
well below the 100 ms time limit of the 10 Hz control loop. On average, the CPU load averaged over all four cores of the
Jetson Nano remains below 12%., and only a peak of 38% occurs at the start of the SIL test, which is expected. Due
to this low overall CPU usage by the control algorithm, a significant part of the memory is still available for running
auxiliary computations and tasks that may be required by other subsystems onboard. The memory consumption is stable

at an average of 52%, with only minor fluctuation (standard deviation of 0.13%) observed throughout the SIL simulation.

VI. Conclusion

In this work, an ICL-based adaptive controller that can simultaneously estimate and compensate for the degradation
of reaction wheels was designed. Through the implementation of an adaptive update law that incorporates integral
concurrent learning, the controller successfully estimated the uncertain parameters, namely the RWs health. The finite
excitation condition was verified online and the uncertain parameters estimation converged exponentially afterwards, as
expected from the presented Lyapunov-based stability analysis. Posterior to the excitation condition being reached, the
adaptive controller shows that it uses the learned estimated health parameters to better allocate control torques on those
wheels still operable and not to those with degraded performance.

Five different scenarios were performed and the controller was able to ensure attitude tracking without saturation of
the RWs, as well as estimation of the varying types of degradation level for all RWs. Although the controller was able to
operate to auspiciously achieve global exponential tracking despite the multiple RW failures induced in simulation,
future work could include the integration of robustness to additive disturbances in this type of controller, since these are
expected to affect the stability result for both state and estimation errors.

SIL simulation results confirmed that the controller can be deployed on an NVIDIA Jetson Nano. We demonstrate
that the controller meets the real-time constraints of 10 Hz and maintains minimal resource utilization throughout the
SIL simulation. These promising results set the stage for the next step, which is to validate the controller further in the

hardware-in-the-loop (HIL) simulation before the actual deployment on the spacecraft.
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